Demonstração de Problema: Considerações Inválidas em Intervalos Abertos

In summary, the nested interval property states that for closed and bounded intervals, there exists a real number contained in the intersection of all the intervals. However, if the intervals are open, this may not hold true as the real number may not be contained in the intervals.
  • #1
JasonPhysicist
13
0
Here goes a theorem and its demonstration(attachment) .Sorry,I couldn't find it in english,so it's in portuguese).

We have that the intervals In=[An,Bn] which are closed and limited.


What I want to know is: what consideration(s) is/are NOT valid on the demonstration,when we consider an open intervals?

Thank you in advance.
 

Attachments

  • 1.doc
    42 KB · Views: 259
Physics news on Phys.org
  • #2
This is the "nested interval property", used to prove that any closed and bounded set of real numbers is compact.

"Let [itex][a_n,b_n][/itex] be a nested set of intervals (nested: each interval is inside the previous interval [itex]a_n\le a_{n+1}\le b_{n+1}\le b_n[/itex]). Then there exist a real number [itex]\zeta[/itex] contained in the intersection of all the intervals. Further, if [itex]lim_{n\rightarrow \infty}b_n-a_n= 0[/itex], that intersection consists of the single number [itex]\zeta[/itex].

It can be shown that, for all n, [itex]a_n\le b_1[/itex] so that [itex]b_1[/itex] is an upper bound on the set [itex]{a_n}[/itex] and so, by the least upper bound property that set has a least upper bound (sup). Let [itex]\zeta[/itex] be [itex]sup{a_n}[/itex]. Then it can be shown that [itex]\zeta[/itex] is a lower bound on the set [itex]{b_n}[/itex] and, so lies in all intervals [itex][a_n, b_n][/itex]

If the intervals are not closed, then it might happen that that [itex]\zeta[/itex] is NOT in some or all of the intervals.

For example, suppose [itex](a_n, b_n)= (0, \frac{1}{n})[/itex]. The set [itex]{a_n}[/itex] is the set {0} which has 0 as its "least upper bound. But 0 is not in any of those intervals. The same example with closed sets [itex][0, \frac{1}{n}][/itex] would give the same set of "left endpoints" {0} having the same sup, 0, but now 0 is contained in each interval. [itex][0, \frac{1}{n}][/itex] has intersection {0} while [itex](0, \frac{1}{n})[/itex] has empty intersection.
 
  • #3


Ao considerar intervalos abertos, a demonstração pode não ser válida quando se assume que os intervalos são limitados. Isso porque, em intervalos abertos, não há um limite superior ou inferior definido, já que os extremos não estão incluídos no intervalo. Além disso, a demonstração também pode não ser válida ao assumir que o intervalo é fechado, pois em intervalos abertos, os extremos não estão incluídos e, portanto, o intervalo não é fechado. Outra consideração inválida pode ser assumir que o intervalo é contínuo, já que em intervalos abertos, não há garantia de que o intervalo seja contínuo, já que os extremos não estão incluídos. Portanto, é importante ter em mente que a demonstração pode não ser válida quando se consideram intervalos abertos, pois as características desses intervalos diferem dos intervalos fechados e podem afetar a validade da demonstração.
 

FAQ: Demonstração de Problema: Considerações Inválidas em Intervalos Abertos

What is "Demonstração de Problema: Considerações Inválidas em Intervalos Abertos"?

"Demonstração de Problema: Considerações Inválidas em Intervalos Abertos" is a Portuguese phrase that translates to "Problem Demonstration: Invalid Considerations in Open Intervals." It is likely a title of a scientific article or research paper discussing issues with certain assumptions or considerations made in the study of open intervals.

What are open intervals?

Open intervals are mathematical intervals that do not include the endpoints. For example, the open interval (0, 10) includes all numbers between 0 and 10, but not 0 or 10 themselves. They are often used in calculus and other areas of mathematics.

What are considered "invalid considerations" in open intervals?

Invalid considerations in open intervals may refer to assumptions or approaches that are not valid or accurate when studying or working with these intervals. This could include incorrect use of formulas, incorrect assumptions about the behavior of functions, or other flaws in the methodology used.

How can these invalid considerations affect scientific research?

Invalid considerations in open intervals can lead to incorrect conclusions, inaccurate data, and flawed research. This can undermine the validity of the study and can potentially lead to incorrect assumptions or conclusions being made based on the faulty data.

Are there any solutions or alternatives to addressing these invalid considerations?

Yes, there are various solutions and alternatives that can be used to address invalid considerations in open intervals. These may include double-checking calculations and assumptions, using alternative methods or approaches, or conducting further research to validate findings. Collaborating with other scientists and seeking peer review can also help to identify and correct any invalid considerations.

Back
Top