- #1
fab13
- 320
- 7
- TL;DR Summary
- In an astrophysics context, I would like to prove than ##\sigma_{o, 1}^{2}<\sigma_{o, 2}^{2}## but I have difficulties to derive this inequality.
Just to remind, ##C_\ell## is the variance of random variables ##a_{\ell m}## following a Gaussian PDF (in spherical harmonics of Legendre) :
##C_{\ell}=\left\langle a_{l m}^{2}\right\rangle=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m}^{2}=\operatorname{Var}\left(a_{l m}\right)##
1) Second observable :
##
\sigma_{D, 2}^{2}=\dfrac{2 \sum_{\ell_{\min }}^{\ell_{\max }}(2 \ell+1)}{\left(f_{s k y} N_{p}^{2}\right)}
##
so :
##
\sigma_{o, 2}^{2}=\dfrac{\sigma_{D, 2}^{2}}{\left(\sum_{\ell_{\min }}^{\ell_{\max }}(2 \ell+1) C_{\ell}\right)^{2}}
##
2) First observable :
##
\sigma_{D, 1}^{2}=\sum_{\ell_{\min }}^{\ell_{\max }} \dfrac{2}{(2 \ell+1)\left(f_{s k y} N_{p}^{2}\right)}
##
so :
##
\sigma_{o, 1}^{2}=\dfrac{\sigma_{D, 1}^{2}}{\left(\sum_{\ell_{\min }}^{\ell_{\max }} C_{\ell}\right)^{2}}
##
3) Goal :
I would like to prove than ##\sigma_{o, 1}^{2}<\sigma_{o, 2}^{2}## but I have difficulties to derive this inequality.
##C_{\ell}=\left\langle a_{l m}^{2}\right\rangle=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m}^{2}=\operatorname{Var}\left(a_{l m}\right)##
1) Second observable :
##
\sigma_{D, 2}^{2}=\dfrac{2 \sum_{\ell_{\min }}^{\ell_{\max }}(2 \ell+1)}{\left(f_{s k y} N_{p}^{2}\right)}
##
so :
##
\sigma_{o, 2}^{2}=\dfrac{\sigma_{D, 2}^{2}}{\left(\sum_{\ell_{\min }}^{\ell_{\max }}(2 \ell+1) C_{\ell}\right)^{2}}
##
2) First observable :
##
\sigma_{D, 1}^{2}=\sum_{\ell_{\min }}^{\ell_{\max }} \dfrac{2}{(2 \ell+1)\left(f_{s k y} N_{p}^{2}\right)}
##
so :
##
\sigma_{o, 1}^{2}=\dfrac{\sigma_{D, 1}^{2}}{\left(\sum_{\ell_{\min }}^{\ell_{\max }} C_{\ell}\right)^{2}}
##
3) Goal :
I would like to prove than ##\sigma_{o, 1}^{2}<\sigma_{o, 2}^{2}## but I have difficulties to derive this inequality.
Last edited: