- #1
fab13
- 318
- 6
- TL;DR Summary
- I try to find the formula of the Brans-Dicke's Lagrangian
Helo,
The Lagrangian in general relativity is written in the following form:
\begin {aligned}
\mathcal {L} & = \frac {1} {2} g ^ {\mu \nu} \nabla \mu \phi \nabla \nu \phi-V (\phi) \\
& = R + \dfrac {16 \pi G} {c ^ {4}} \mathcal {L} _ {\mathcal {M}}
\end {aligned}
with ## g ^ {\mu \nu}: ## the metric
## \phi: ## non-gravitational scalar field
## R ##: Ricci scalar
## \mathcal {L} _ {\mathcal {M}}: ## Lagrangian of the density of matter
By replacing the gravitational constant ## G ## by its new definition, ## \dfrac{1}{\varphi (t)}, ## How to prove that the Lagrangian within the framework of Brans-Dicke's model becomes:
##
\mathcal {L} = \varphi R + \dfrac {16 \pi} {c ^ {4}} \mathcal {L} _ {\mathcal {M}} - \omega_ {BD} \left (\dfrac {\varphi_ {, i} \varphi ^ {, i}} {\varphi} \right)
##
Regards
The Lagrangian in general relativity is written in the following form:
\begin {aligned}
\mathcal {L} & = \frac {1} {2} g ^ {\mu \nu} \nabla \mu \phi \nabla \nu \phi-V (\phi) \\
& = R + \dfrac {16 \pi G} {c ^ {4}} \mathcal {L} _ {\mathcal {M}}
\end {aligned}
with ## g ^ {\mu \nu}: ## the metric
## \phi: ## non-gravitational scalar field
## R ##: Ricci scalar
## \mathcal {L} _ {\mathcal {M}}: ## Lagrangian of the density of matter
By replacing the gravitational constant ## G ## by its new definition, ## \dfrac{1}{\varphi (t)}, ## How to prove that the Lagrangian within the framework of Brans-Dicke's model becomes:
##
\mathcal {L} = \varphi R + \dfrac {16 \pi} {c ^ {4}} \mathcal {L} _ {\mathcal {M}} - \omega_ {BD} \left (\dfrac {\varphi_ {, i} \varphi ^ {, i}} {\varphi} \right)
##
Regards