- #1
spaghetti3451
- 1,344
- 34
Homework Statement
This is a basic cosmology problem.
The Friedmann equations are
##\Big( \frac{\dot{a}}{a}\Big)^{2}+\frac{k}{a^{2}}=\frac{8\pi}{3m_{Pl}^{2}}\rho## and ##\Big( \frac{\ddot{a}}{a} \Big) = - \frac{4\pi}{3m_{Pl}^{2}}(\rho + 3p)##.
Using the density parameter ##\Omega \equiv \frac{\rho}{\rho_{c}}=\frac{8\pi}{3m_{Pl}^{2}}\frac{\rho}{H^{2}}##, we can write the density parameter as ##\Omega = 1 + \frac{k}{(aH)^{2}}##.
Furthermore, for perfect fluids, ##p=\omega\rho## so that the continuity equation ##\dot{\rho}+3\Big(\frac{\dot{a}}{a}\Big)(\rho + p)=0## for perfect fluids leads to ##\rho \propto a^{-3(1+w)}##.
(a) Show that ##\frac{d\Omega}{d\text{ln}a}=(1+3w)\Omega(\Omega -1)##.
(b) For matter and radiation, ##1+3w>0##. Show that this implies that ##\frac{d|\Omega -1|}{d\text{ln}a}>0##. What does this mean for a flat universe?
Homework Equations
The Attempt at a Solution
I have to substitute ##\rho \propto a^{-3(1+w)}## into the Freidmann equation ##\Big( \frac{\dot{a}}{a}\Big)^{2}+\frac{k}{a^{2}}=\frac{8\pi}{3m_{Pl}^{2}}\rho## and find an expression for H in terms of a and k.
Is this the correct approach?