- #1
Bacle
- 662
- 1
Hi, Everyone:
There is an exercise in the beginning of Bott and Tu's Diff. Forms in
Algebraic Topology, of finding the DeRham Cohomology of X=R^2-P-Q,
where P,Q are two different points in R^2. What is confusing is that,
at the point of the exercise, we have not yet introduced Mayer-Vietoris
sequence. And we cannot either use tricks like using the fact that X retracts
(i.e., is homotopic to) the figure-8 space, aka, wedge of two circles, and then
using algebraic topology.
Bottom line is all we seem to have available is just the definition of
DeRham cohomology as the quotient space of closed forms modded out by
exact forms.
Any Ideas.?
Thanks.
There is an exercise in the beginning of Bott and Tu's Diff. Forms in
Algebraic Topology, of finding the DeRham Cohomology of X=R^2-P-Q,
where P,Q are two different points in R^2. What is confusing is that,
at the point of the exercise, we have not yet introduced Mayer-Vietoris
sequence. And we cannot either use tricks like using the fact that X retracts
(i.e., is homotopic to) the figure-8 space, aka, wedge of two circles, and then
using algebraic topology.
Bottom line is all we seem to have available is just the definition of
DeRham cohomology as the quotient space of closed forms modded out by
exact forms.
Any Ideas.?
Thanks.