- #1
greisen
- 76
- 0
Hi,
I have to show that if the derivate f'(x) of a generalized function f(x) is defined by the sequence f'_n(x) where f(x) is defined
[tex]f_n(x)[\tex]
then
[tex]\int_{-\infty}^{\infty}f'(x)F(x) dx = - \int_{-\infty}^{\infty}f(x)F'(x) dx [/tex]
I use the limits for generalized functions and get
[tex]lim_{n \to \infty} \int_{-\infty}^{\infty}f'_n(x)F(x) dx = - \int_{-\infty}^{\infty}f_n(x)F'(x) dx [/tex]
which should show the above - I am a liltte confused where the minus sign comes from?
[tex]- \int_{-\infty}^{\infty}f(x)F'(x) dx [/tex]
Any help appreciated - thanks in advance
I have to show that if the derivate f'(x) of a generalized function f(x) is defined by the sequence f'_n(x) where f(x) is defined
[tex]f_n(x)[\tex]
then
[tex]\int_{-\infty}^{\infty}f'(x)F(x) dx = - \int_{-\infty}^{\infty}f(x)F'(x) dx [/tex]
I use the limits for generalized functions and get
[tex]lim_{n \to \infty} \int_{-\infty}^{\infty}f'_n(x)F(x) dx = - \int_{-\infty}^{\infty}f_n(x)F'(x) dx [/tex]
which should show the above - I am a liltte confused where the minus sign comes from?
[tex]- \int_{-\infty}^{\infty}f(x)F'(x) dx [/tex]
Any help appreciated - thanks in advance