- #1
MathematicalPhysicist
Gold Member
- 4,699
- 373
On page 208 of Ashcroft and Mermin they write:
I tried to derive equation (11.30) but got stuck on something, I hope someone can help me with it.
I'll write below my attempt at deriving equation (11.30).
First, notice the following few equations on pages 206-207:
$$(11.24) \ \ \ \ \ \phi_{\vec{k}}^v = e^{i\vec{k}\cdot \vec{r}}+\sum_c b_c \psi_{\vec{k}}^c(\vec{r})$$
$$(11.26)\ \ \ \ \ \ b_c = -\int d\vec{r}\psi_{\vec{k}}^{c*}(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$
$$(11.27)\ \ \ \ \ \ \ \psi_{\vec{k}} = \sum_{\vec{K}}c_{\vec{K}}\phi_{\vec{k}+\vec{K}}$$
Now for my attempt at solution:
$$\psi_{\vec{k}}^v(\vec{r})=\sum_{\vec{K}} c_{\vec{K}}\phi_{\vec{k}+\vec{K}}^v = $$
$$=\sum_{\vec{K}} c_{\vec{K}}\bigg[ e^{i(\vec{k}+\vec{K})\cdot\vec{r}}+\sum_c b_c \psi^c_{\vec{k}+\vec{K}}(\vec{r})\bigg]=$$
$$=\phi_{\vec{k}}^v(\vec{r})-\int d\vec{r}'\psi_{\vec{k}}^c(\vec{r})e^{i\vec{k}\cdot \vec{r}'}\sum_{\vec{K}}\sum_cc_{\vec{K}}\psi_{\vec{k}+\vec{K}}^c(\vec{r})$$Where in the third equality above I used (11.26), in the second equality I used equation (11.24).
Now, I am stuck, how to derive from the above last three equations, equation (11.30)?
We describe the pseudopotential method only in its earliest formulation, which is basically a recasting of the OPW approach.
Suppose that we write the exact wave function for a valence level as a linear combination of OPW's, as in (11.27).
Let ##\phi_{\vec{k}}^v## be the plane wave part of this expansion:
$$(11.29)\ \ \ \ \ \ \ \phi_{\vec{k}}^v(\vec{r})=\sum_{\vec{K}}c_{\vec{K}}e^{i(\vec{k}+\vec{K})\cdot\vec{r}}$$
Then we can write the expansions (11.27) and (11.24) as:
$$(11.30)\ \ \ \ \ \ \psi_{\vec{k}}^v(\vec{r})=\phi_{\vec{k}}^v(\vec{r})-\sum_{c}\bigg( \int d\vec{r}' \psi_{\vec{k}}^{c*}(\vec{r}')\phi_{\vec{k}}^v(\vec{r}') \bigg)\psi_{\vec{k}}^c(\vec{r})$$
I tried to derive equation (11.30) but got stuck on something, I hope someone can help me with it.
I'll write below my attempt at deriving equation (11.30).
First, notice the following few equations on pages 206-207:
$$(11.24) \ \ \ \ \ \phi_{\vec{k}}^v = e^{i\vec{k}\cdot \vec{r}}+\sum_c b_c \psi_{\vec{k}}^c(\vec{r})$$
$$(11.26)\ \ \ \ \ \ b_c = -\int d\vec{r}\psi_{\vec{k}}^{c*}(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$
$$(11.27)\ \ \ \ \ \ \ \psi_{\vec{k}} = \sum_{\vec{K}}c_{\vec{K}}\phi_{\vec{k}+\vec{K}}$$
Now for my attempt at solution:
$$\psi_{\vec{k}}^v(\vec{r})=\sum_{\vec{K}} c_{\vec{K}}\phi_{\vec{k}+\vec{K}}^v = $$
$$=\sum_{\vec{K}} c_{\vec{K}}\bigg[ e^{i(\vec{k}+\vec{K})\cdot\vec{r}}+\sum_c b_c \psi^c_{\vec{k}+\vec{K}}(\vec{r})\bigg]=$$
$$=\phi_{\vec{k}}^v(\vec{r})-\int d\vec{r}'\psi_{\vec{k}}^c(\vec{r})e^{i\vec{k}\cdot \vec{r}'}\sum_{\vec{K}}\sum_cc_{\vec{K}}\psi_{\vec{k}+\vec{K}}^c(\vec{r})$$Where in the third equality above I used (11.26), in the second equality I used equation (11.24).
Now, I am stuck, how to derive from the above last three equations, equation (11.30)?
Last edited: