- #36
Sagittarius A-Star
Science Advisor
- 1,302
- 978
Yes. Without a ##\gamma##:PeterDonis said:The best way to get an equation valid for photons as well as massive particles is to start with ##m^2 = E^2 - p^2##, which is obtained by simply taking the norm of the 4-momentum vector. Then you can, as I described in an earlier post, specialize to the cases ##m > 0## and ##m = 0## as needed.
(1) Four-momentum ## \mathbf P = (E/c , p_x, p_y, p_z) = (\frac {E}{c^2}c , \frac {E}{c^2} v_x , \frac {E}{c^2} v_y , \frac {E}{c^2} v_z) ##
(2) Pseudo-scalar product ## \mathbf P \cdot \mathbf P = \frac {E^2}{c^4} (c^2-v^2) = \frac {E^2}{c^2} (1-\frac{v^2}{c^2})##
(3) Minkowski-norm ## \left \|\mathbf P\right \| * c = E \sqrt {1-\frac{v^2}{c^2}} =
\begin{cases}
0 & \text{if } v=c \\
E_0 & \text{if } v=0 \\
E_0 & \text{if } v>0 \ \ \ and \ \ \ v<c (invariant, E\ depends\ on\ v)
\end{cases}
##
from (2), (1) and (3) => Pseudo-scalar product ## \mathbf P \cdot \mathbf P *c^2 = E^2 - p^2c^2 =
\begin{cases}
0 & \text{if } v=c \\
E_0^2 & \text{if } v<c
\end{cases}
##
Last edited: