- #1
skate_nerd
- 176
- 0
I've got a problem that asks us to derive the Euler-Lagrange equations by only using Hamilton's equations and the definition of the Hamiltonian in terms of the Lagrangian. Here's what I tried:
The Hamiltonian is defined as
\begin{align*}
\mathcal{H} = \dot{q}_ip_i - \mathcal{L}
\end{align*}
(where the summation convention is implied), and solving for $\mathcal{L}$, we have
\begin{align*}
\mathcal{L} = \dot{q}_ip_i - \mathcal{H}
\end{align*}
Taking the partial derivative with respect to $\dot{q}_i$ on both sides of the above equation, we have
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} &= \frac{\partial}{\partial\dot{q}_i}\left[\dot{q}_ip_i - \mathcal{H}\right] \\
&= p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
We are given that
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} = p_i
\end{align*}
so going back to our definition for the Hamiltonian, we have
\begin{align*}
p_i = p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
So we find that
\begin{align*}
\frac{\partial\mathcal{H}}{\partial\dot{q}_i} = 0
\end{align*}
Clearly what I have tried is going nowhere, but the professor gave a hint where he says to start with the definition of the Hamiltonian and invert it to solve for the Lagrangian, which is exactly what I did. I feel like I'm at a bit of a roadblock, so any hints would be appreciated. Thanks everybody
The Hamiltonian is defined as
\begin{align*}
\mathcal{H} = \dot{q}_ip_i - \mathcal{L}
\end{align*}
(where the summation convention is implied), and solving for $\mathcal{L}$, we have
\begin{align*}
\mathcal{L} = \dot{q}_ip_i - \mathcal{H}
\end{align*}
Taking the partial derivative with respect to $\dot{q}_i$ on both sides of the above equation, we have
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} &= \frac{\partial}{\partial\dot{q}_i}\left[\dot{q}_ip_i - \mathcal{H}\right] \\
&= p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
We are given that
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} = p_i
\end{align*}
so going back to our definition for the Hamiltonian, we have
\begin{align*}
p_i = p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
So we find that
\begin{align*}
\frac{\partial\mathcal{H}}{\partial\dot{q}_i} = 0
\end{align*}
Clearly what I have tried is going nowhere, but the professor gave a hint where he says to start with the definition of the Hamiltonian and invert it to solve for the Lagrangian, which is exactly what I did. I feel like I'm at a bit of a roadblock, so any hints would be appreciated. Thanks everybody