MHB Derivation of Euler-Lagrange equations w/ Hamilton's equations

AI Thread Summary
The discussion focuses on deriving the Euler-Lagrange equations using Hamilton's equations and the Hamiltonian's definition in terms of the Lagrangian. The initial attempt involved manipulating the Hamiltonian to express the Lagrangian, but the user encountered a roadblock when deriving the necessary relationships. A key insight shared is that the momentum \( p \) is a function of \( \dot{q} \), which affects the partial derivatives in the calculations. This oversight is crucial for correctly applying Hamilton's equations to arrive at the Euler-Lagrange equations. The user plans to rework their approach with this understanding in mind.
skate_nerd
Messages
174
Reaction score
0
I've got a problem that asks us to derive the Euler-Lagrange equations by only using Hamilton's equations and the definition of the Hamiltonian in terms of the Lagrangian. Here's what I tried:

The Hamiltonian is defined as
\begin{align*}
\mathcal{H} = \dot{q}_ip_i - \mathcal{L}
\end{align*}
(where the summation convention is implied), and solving for $\mathcal{L}$, we have
\begin{align*}
\mathcal{L} = \dot{q}_ip_i - \mathcal{H}
\end{align*}
Taking the partial derivative with respect to $\dot{q}_i$ on both sides of the above equation, we have
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} &= \frac{\partial}{\partial\dot{q}_i}\left[\dot{q}_ip_i - \mathcal{H}\right] \\
&= p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
We are given that
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} = p_i
\end{align*}
so going back to our definition for the Hamiltonian, we have
\begin{align*}
p_i = p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
So we find that
\begin{align*}
\frac{\partial\mathcal{H}}{\partial\dot{q}_i} = 0
\end{align*}

Clearly what I have tried is going nowhere, but the professor gave a hint where he says to start with the definition of the Hamiltonian and invert it to solve for the Lagrangian, which is exactly what I did. I feel like I'm at a bit of a roadblock, so any hints would be appreciated. Thanks everybody
 
Mathematics news on Phys.org
Hi skatenerd,

This is a nice question.

skatenerd said:
I've got a problem that asks us to derive the Euler-Lagrange equations by only using Hamilton's equations and the definition of the Hamiltonian in terms of the Lagrangian. Here's what I tried:

The Hamiltonian is defined as
\begin{align*}
\mathcal{H} = \dot{q}_ip_i - \mathcal{L}
\end{align*}
(where the summation convention is implied), and solving for $\mathcal{L}$, we have
\begin{align*}
\mathcal{L} = \dot{q}_ip_i - \mathcal{H}
\end{align*}
Taking the partial derivative with respect to $\dot{q}_i$ on both sides of the above equation, we have
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} &= \frac{\partial}{\partial\dot{q}_i}\left[\dot{q}_ip_i - \mathcal{H}\right] \\
&= p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
We are given that
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} = p_i
\end{align*}
so going back to our definition for the Hamiltonian, we have
\begin{align*}
p_i = p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
So we find that
\begin{align*}
\frac{\partial\mathcal{H}}{\partial\dot{q}_i} = 0
\end{align*}

Clearly what I have tried is going nowhere, but the professor gave a hint where he says to start with the definition of the Hamiltonian and invert it to solve for the Lagrangian, which is exactly what I did. I feel like I'm at a bit of a roadblock, so any hints would be appreciated. Thanks everybody

Your attempt was good and was in the right direction. Given your calculation, I imagine you've overlooked the same thing I did when I first encountered the relationship between Hamiltonian and Lagrangian mechanics. To simplify things, I will present things in one generalized coordinate dimension and let you work out how to extend things to the case of several variables (i.e. I won't have any $i$ indices anywhere)

Note that via the Legendre transformation, $p=p(q,\dot{q})$ and so its partial derivative with respect to $\dot{q}$ isn't zero in general. Furthermore, you can use this fact to further expand the partial derivative of the Hamiltonian in your calculation. From here you should be able to apply Hamilton's equations to derive the Euler-Lagrange equations.

Hopefully this can help you make some sense out of things this time around.
 
GJA said:
Hi skatenerd,

This is a nice question.
Your attempt was good and was in the right direction. Given your calculation, I imagine you've overlooked the same thing I did when I first encountered the relationship between Hamiltonian and Lagrangian mechanics. To simplify things, I will present things in one generalized coordinate dimension and let you work out how to extend things to the case of several variables (i.e. I won't have any $i$ indices anywhere)

Note that via the Legendre transformation, $p=p(q,\dot{q})$ and so its partial derivative with respect to $\dot{q}$ isn't zero in general. Furthermore, you can use this fact to further expand the partial derivative of the Hamiltonian in your calculation. From here you should be able to apply Hamilton's equations to derive the Euler-Lagrange equations.

Hopefully this can help you make some sense out of things this time around.

Thanks for the response! I think I see what you mean. When I took the partial derivative with respect to $\dot{q}_i$ I neglected the fact that $p_i$ is a function of $\dot{q}_i$. I'll rework this keeping that in mind.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top