- #1
andresordonez
- 68
- 0
(I know how to do this without the rotation matrices)
Any suggestion would be much appreciated.
Show that the relationship between the forces in the inertial (S') and non-inertial(S) reference frames, with a coordinate transformation given by
[tex] \vec{r}=R \vec{r'} [/tex]
is:
[tex] \vec{F'} = \vec{F} + m(\vec{\omega} \times (\vec{\omega} \times \vec{r}) + 2\vec{\omega} \times \vec{v}) [/tex]
[tex]
\[ R = \left( \begin{array}{ccc}
\cos(\omega t) & \sin(\omega t) & 0 \\
-\sin(\omega t) & \cos(\omega t) & 0 \\
0 & 0 & 1 \end{array} \right).\]
\[ R^{-1} = R^t = \left( \begin{array}{ccc}
\cos(\omega t) & -\sin(\omega t) & 0 \\
\sin(\omega t) & \cos(\omega t) & 0 \\
0 & 0 & 1 \end{array} \right)\]
\[ -\vec{\omega} \times (\vec{\omega} \times \vec{r}) = -\omega^2 \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{r}\]
\[ \vec{\omega} \times \vec{v} = -\omega \left( \begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{v}\]
[/tex]
[tex]
\ddot{\vec{r}} = R\ddot{\vec{r'}} + 2\dot{R}\dot{\vec{r'}} + \ddot{R}\vec{r'} = \ddot{R}R^{-1}\vec{r} + 2\dot{R}(\dot{R^{-1}}\vec{r}+R^{-1}\dot{\vec{r}}) + R\ddot{\vec{r'}}
[/tex]
[tex]
\[ \ddot{R}R^{-1}\vec{r} = -\omega^2 \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{r}\]
[/tex]
[tex]
\[ \dot{R}(R^{-1}\vec{r} + R^{-1}\dot{\vec{r}}) = \omega^2 \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{r} - \omega \left( \begin{array}{ccc}
0 & -1 & 0\\
1 & 0 & 0\\
0 & 0 & 0\end{array} \right) \dot{\vec{r}}\]
[/tex]
then
[tex]
\ddot{\vec{r}} = -\vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2\vec{\omega} \times \dot{\vec{r}} + R\ddot{\vec{r'}}
[/tex]
[tex]
R\vec{F'} = \vec{F} + m\vec{\omega}\times(\vec{\omega}\times\vec{r}) + 2m \vec{\omega} \times \dot{\vec{r}}
[/tex]
How do I get rid of R??
Any suggestion would be much appreciated.
Homework Statement
Show that the relationship between the forces in the inertial (S') and non-inertial(S) reference frames, with a coordinate transformation given by
[tex] \vec{r}=R \vec{r'} [/tex]
is:
[tex] \vec{F'} = \vec{F} + m(\vec{\omega} \times (\vec{\omega} \times \vec{r}) + 2\vec{\omega} \times \vec{v}) [/tex]
Homework Equations
[tex]
\[ R = \left( \begin{array}{ccc}
\cos(\omega t) & \sin(\omega t) & 0 \\
-\sin(\omega t) & \cos(\omega t) & 0 \\
0 & 0 & 1 \end{array} \right).\]
\[ R^{-1} = R^t = \left( \begin{array}{ccc}
\cos(\omega t) & -\sin(\omega t) & 0 \\
\sin(\omega t) & \cos(\omega t) & 0 \\
0 & 0 & 1 \end{array} \right)\]
\[ -\vec{\omega} \times (\vec{\omega} \times \vec{r}) = -\omega^2 \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{r}\]
\[ \vec{\omega} \times \vec{v} = -\omega \left( \begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{v}\]
[/tex]
The Attempt at a Solution
[tex]
\ddot{\vec{r}} = R\ddot{\vec{r'}} + 2\dot{R}\dot{\vec{r'}} + \ddot{R}\vec{r'} = \ddot{R}R^{-1}\vec{r} + 2\dot{R}(\dot{R^{-1}}\vec{r}+R^{-1}\dot{\vec{r}}) + R\ddot{\vec{r'}}
[/tex]
[tex]
\[ \ddot{R}R^{-1}\vec{r} = -\omega^2 \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{r}\]
[/tex]
[tex]
\[ \dot{R}(R^{-1}\vec{r} + R^{-1}\dot{\vec{r}}) = \omega^2 \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{array} \right) \vec{r} - \omega \left( \begin{array}{ccc}
0 & -1 & 0\\
1 & 0 & 0\\
0 & 0 & 0\end{array} \right) \dot{\vec{r}}\]
[/tex]
then
[tex]
\ddot{\vec{r}} = -\vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2\vec{\omega} \times \dot{\vec{r}} + R\ddot{\vec{r'}}
[/tex]
[tex]
R\vec{F'} = \vec{F} + m\vec{\omega}\times(\vec{\omega}\times\vec{r}) + 2m \vec{\omega} \times \dot{\vec{r}}
[/tex]
How do I get rid of R??