- #1
PcumP_Ravenclaw
- 106
- 4
Dear all, can you please verify if my derivation of the algebraic formula for the rotation isometry is correct. The handwritten file is attached.
The derivation from the book (Alan F beardon, Algebra and Geometry) which is succinct but rather unclear is given below.
Assume that f (z) = az + b. If a = 1 then f is a translation. If a = 1,
then f (w) = w, where w = b/(1 − a), and f (z) − w = a(z − w). It is now
clear that f is a rotation about w of angle θ, where a = ## e^{iθ} ## .
danke...
The derivation from the book (Alan F beardon, Algebra and Geometry) which is succinct but rather unclear is given below.
Assume that f (z) = az + b. If a = 1 then f is a translation. If a = 1,
then f (w) = w, where w = b/(1 − a), and f (z) − w = a(z − w). It is now
clear that f is a rotation about w of angle θ, where a = ## e^{iθ} ## .
danke...