Graduate Derivation of the Heisenberg equation for electron density

Click For Summary
The discussion focuses on deriving the Heisenberg equation for electron density in the context of studying plasmons, referencing "Haken-Quantum Field Theory of Solids." The user seeks clarification on the Hamiltonian operator's formulation in terms of creation and annihilation operators, noting discrepancies with the book's definition of momentum variables. They express confusion over the commutation relations and the validity of exchanging indices in their calculations. Ultimately, they are looking for guidance to align their results with the book's solution. The user concludes by offering to share their solution for future reference.
GiovanniNunziante
Messages
2
Reaction score
1
I'm studying plasmons from "Haken-Quantum Field Theory of Solids", and i need some help in the calculation of the equation of motion of eletrons' density
\begin{equation}
\hat{\rho}_{\overrightarrow{q}} = \frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}}
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}}
\label{eq:rhoaadag}
\end{equation}
where ##\hat{a}## and ##\hat{a}^{\dagger}## are fermionic operator
\begin{align}
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = \delta_{\overrightarrow{k'},\overrightarrow{k}}
\\
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}_{\overrightarrow{k'}}\right\rbrace = \left\lbrace\hat{a}^{\dagger}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = 0 \quad \forall \overrightarrow{k},\overrightarrow{k}'
\label{eq:anticomm}
\end{align}
The book starts from the Heisneberg equation for ##\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}\hat{a}_{\overrightarrow{k}}##
\begin{equation}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right) = \left[\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}},\hat{H}\right]
\label{eq:eqmotopre}
\tag{4}
\end{equation}
where the Hamiltonian operator is
\begin{equation}
\begin{aligned}
\hat{H} = \int d\overrightarrow{r} \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \left(-\frac{\hbar^2}{2 m^*} \nabla^2 \right) \hat{\psi}
\left(\overrightarrow{r}\right) + \\
\frac{1}{2}\int\int d\overrightarrow{r} d\overrightarrow{r}' \hat{\psi}^{\dagger}\left(\overrightarrow{r}'\right) \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \frac{e^2}{|\overrightarrow{r}'-\overrightarrow{r}|} \hat{\psi}\left(\overrightarrow{r}\right) \hat{\psi}\left(\overrightarrow{r}'\right)
\end{aligned}
\label{eq:hsecquant}
\end{equation}
with
\begin{equation}
\hat{\psi}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} \exp\left[i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:annichila}
\end{equation}
\begin{equation}
\hat{\psi}^{\dagger}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}^{\dagger}_{\overrightarrow{k}} \exp\left[- i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:crea}
\end{equation}
The first doubt is on the Hamiltonian operator rewritten in terms of creation and annihilation operator.
According to my calculations, the Hamiltonian operator is
\begin{equation}
\hat{H}=\sum_{\overrightarrow{k}}
E_{\overrightarrow{k}}\,
\hat{a}^{\dagger}_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} + \frac{1}{2} \sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}\,
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}^{\dagger}_{\overrightarrow{k}_2} \hat{a}_{\overrightarrow{k}_3} \hat{a}_{\overrightarrow{k}_4}
\label{eq:hamampiezze}
\end{equation}
where
\begin{equation}
v_{q'} = \frac{4\pi e^2}{V q'^2};\quad \overrightarrow{q}'=\overrightarrow{k}_1 - \overrightarrow{k}_4
\label{eq:vq}
\end{equation}
while the book states that
$$
\overrightarrow{q}'=\overrightarrow{k}_1 + \overrightarrow{k}_3 - \overrightarrow{k}_2 - \overrightarrow{k}_4
$$
I ignore this thing, so i calculate the commutator in the Heisenberg equation
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
+
%prima somma ps
& \frac{1}{2}
\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
\delta_{\overrightarrow{k}_2,\overrightarrow{k}_3}
%%%%argomento ps
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
\label{eq:primo}
\\
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondo}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:terzo}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:quarto}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4 - \overrightarrow{q}}
\label{eq:quinto}
\end{align*}
the sum with the commutator
$$
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
$$
is equal to zero.

Second doubt : I exchange the indices in the last two sums (can i do it ?)

In the second to last sum, i exchange \[\overrightarrow{k}_1\] with ##\overrightarrow{k}_2## and $\overrightarrow{k}_3$ with $\overrightarrow{k}_4$, while, in the last sum, ##\overrightarrow{k}_3## with $\overrightarrow{k}_4$ and $\overrightarrow{k}_1## with ##\overrightarrow{k}_2##
\begin{align*}
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:primosec}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondosec}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\label{eq:terzosec}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q}}
\label{eq:quartosec}
\end{align*}
i manipulate them, but i don't find the solution of the book, that is
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
%ss
\\
&+\sum_{k', q'}
v_{q'} \;
%arg ss
\left[\left(\hat{a}^{\dagger}_{k + q}
\hat{a}_{k + q'}
\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\right)
-
\left(\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\hat{a}^{\dagger}_{k + q- q'}
\hat{a}_k\right)
\right]
\end{align*}
Am I on the right way? Can you give me some hint in order to find the solution of the book?

Thank you for who will answer me
 
Physics news on Phys.org
I solved it. if someone wants the solution, i will post it
 
Please post for future generations of posters... I might be interested in the future, but not in the near 5-10 years. :-)
 
  • Like
Likes GiovanniNunziante
A relative asked me about the following article: Experimental observation of a time rondeau crystal https://www.nature.com/articles/s41567-025-03028-y I pointed my relative to following article: Scientists Discovered a Time Crystal That Reveals a New Way to Order Time https://www.yahoo.com/news/articles/scientists-discovered-time-crystal-reveals-180055389.html This area is outside of my regular experience. I'm interested in radiation effects in polycrystalline material, i.e., grain...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K