Derivation of time period for physical pendula without calculus

AI Thread Summary
The discussion centers on deriving the time period T of a physical pendulum, specifically a uniform rod pendulum, without using calculus. The original poster is seeking assistance to complete their derivation, noting that a referenced source skips a crucial step in the process. They express confusion regarding the relationship between a rotating disc's angle, its x-coordinate, and the x-component of acceleration. A participant attempts to clarify this relationship, but the original poster requests further elaboration on the concept. The thread highlights the challenges of deriving pendulum equations using torque without calculus.
danpendr
Messages
2
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: I'm stuck trying to find the equation for time period T of a physical pendulum without any calculus using torque.

Hello all.

I am currently writing my IB Physics HL IA (high school physics lab report).

I am investigating the effect of length on the time period of a uniform rod pendulum.

I need to derive the following equation, ideally without using calculus:
1697396880317.png

This website has a good derivation but skips an important step at the end, when stating "This is identical in form to the equation for the simple pendulum and yields a period: EQUATION ABOVE". I was wondering if there was a way to arrive to the equation without jumping through hoops. If anyone could help me continue my derivation I'd be very appreciative. I got as far as this:

1697397217475.png
1697397158902.png


Kind regards
Dan
 
Physics news on Phys.org
Consider a point on the periphery of a disc rotating at constant speed. What is the relationship between the disc's rotation angle at some instant, the x coordinate of the point and the component of its acceleration in the x direction?
 
haruspex said:
Consider a point on the periphery of a disc rotating at constant speed. What is the relationship between the disc's rotation angle at some instant, the x coordinate of the point and the component of its acceleration in the x direction?
haruspex, thank you for your response, but I don't seem to understand. What do you mean by x-coordinate?

Could you show your working out?

Many thanks
Dan
 
danpendr said:
What do you mean by x-coordinate?
Take a disc radius r to be rotating about the origin in the XY plane at angular velocity ω. For a point on the perimeter, what is the relationship between its x coordinate and the x component of its acceleration?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top