- #1
Aurelius120
- 251
- 24
- Homework Statement
- Derive an expression for torque due to uniform magnetic field in a loop
- Relevant Equations
- $$\tau=BINA\sin \theta$$
I can derive it for a circular loop:
$$dF=BI\sin\phi\ dl=BIr\sin\phi\ d\phi$$
Torque on quarter circle when field is parallel to plane of loop=$$\tau=\int^{(\pi/2)}_0 BI \ dl \sin\phi (r\sin\phi)$$$$=\int^{(\pi/2)}_0 BIr^2 \sin^2\phi\ d\phi$$
Net torque=##4\tau=BIA##
If magnetic field is at any other angle, only its parallel component will exert torque=##BIA\sin\theta##
I know the derivation for rectangular loop(length=l, breadth=b).
Force on each arm =##IbB ##
Torque=##2IbB\frac{a}{2}=BIA##
If magnetic field is at any other angle, only its parallel component will exert torque=##BIA\sin\theta##
Is there a general derivation for such cases that holds for (at least the most common shapes)? Will it be too advanced for my level?
$$dF=BI\sin\phi\ dl=BIr\sin\phi\ d\phi$$
Torque on quarter circle when field is parallel to plane of loop=$$\tau=\int^{(\pi/2)}_0 BI \ dl \sin\phi (r\sin\phi)$$$$=\int^{(\pi/2)}_0 BIr^2 \sin^2\phi\ d\phi$$
Net torque=##4\tau=BIA##
If magnetic field is at any other angle, only its parallel component will exert torque=##BIA\sin\theta##
I know the derivation for rectangular loop(length=l, breadth=b).
Force on each arm =##IbB ##
Torque=##2IbB\frac{a}{2}=BIA##
If magnetic field is at any other angle, only its parallel component will exert torque=##BIA\sin\theta##
Is there a general derivation for such cases that holds for (at least the most common shapes)? Will it be too advanced for my level?