- #1
caters
- 229
- 10
Homework Statement
if $$y = \frac{2x^5-3x^3+x^2}{x^3}$$ then $$\frac{dy}{dx} =$$
Homework Equations
if $$f(x) = x^n$$ then $$f'(x) = nx^{n-1}$$
The Attempt at a Solution
$$\frac{2x^5-3x^3+x^2}{x^3} = \frac{2x^5}{x^3} - \frac{3x^3}{x^3} + \frac{x^2}{x^3}$$
$$ f'(\frac{2x^5-3x^3+x^2}{x^3}) = \frac{10x^4}{3x^2} - \frac{9x^2}{3x^2} + \frac{2x}{3x^2}$$
$$ f'(\frac{2x^5-3x^3+x^2}{x^3}) = \frac{10x^4}{3x^2} - 3 + \frac{2x}{3x^2}$$
And now I am stuck as to how to simplify this. Should I have done the whole polynomial division before I took the derivative?