- #1
username12345
- 48
- 0
I am unclear about an example of calculating a derivative in a book I am reading. I think the problem is my algebra.
[tex]
\begin{flalign*}
\mathrm{if} & & y & = & & x^n \\
\mathrm{then} & & \frac{dy}{dx} & = & & nx^{n-1} \\
\mathrm{so if} & & y & = & & x^2 - x - 2 \\
\mathrm{then} & & \frac{dy}{dx} & = & & 2x - 1 \\
\end{flalign*}
[/tex]
I can't find how it ended up as [tex]2x - 1[/tex]. Here's is my attempt:
[tex]
\begin{flalign*}
y & = & & x^2 - x - 2 \\
\frac{dy}{dx} & = & & nx^{n-1} \\
& = & & 2x^{2-1} - 1x^{1-1} - 1(2)^{1-1} \\
& = & & 2x - 1 - 1 \\
& = & & 2x - 2 \\
\end{flalign*}
[/tex]
How do I get to the same result of [tex]2x - 1[/tex] ?
[tex]
\begin{flalign*}
\mathrm{if} & & y & = & & x^n \\
\mathrm{then} & & \frac{dy}{dx} & = & & nx^{n-1} \\
\mathrm{so if} & & y & = & & x^2 - x - 2 \\
\mathrm{then} & & \frac{dy}{dx} & = & & 2x - 1 \\
\end{flalign*}
[/tex]
I can't find how it ended up as [tex]2x - 1[/tex]. Here's is my attempt:
[tex]
\begin{flalign*}
y & = & & x^2 - x - 2 \\
\frac{dy}{dx} & = & & nx^{n-1} \\
& = & & 2x^{2-1} - 1x^{1-1} - 1(2)^{1-1} \\
& = & & 2x - 1 - 1 \\
& = & & 2x - 2 \\
\end{flalign*}
[/tex]
How do I get to the same result of [tex]2x - 1[/tex] ?