- #1
Buddy711
- 8
- 0
I want to show that
if the energy is the integral :
[tex]
E = \frac{1}{2} \int^{\infty}_{-\infty} u_{t}^2 \ dx
[/tex]
then the derivative of the energy with respect to time [tex]t[/tex] is
[tex]
\frac{dE}{dt} = - \int^{\infty}_{-\infty} u_{xt}^2 + f'(u) u_{t}^2 \ dx
[/tex]
What is the first step can you suggest?
Thanks~!
ps.
[tex]
u : u(x,t)
[/tex]
if the energy is the integral :
[tex]
E = \frac{1}{2} \int^{\infty}_{-\infty} u_{t}^2 \ dx
[/tex]
then the derivative of the energy with respect to time [tex]t[/tex] is
[tex]
\frac{dE}{dt} = - \int^{\infty}_{-\infty} u_{xt}^2 + f'(u) u_{t}^2 \ dx
[/tex]
What is the first step can you suggest?
Thanks~!
ps.
[tex]
u : u(x,t)
[/tex]