Derivative of ln(x): Definition & Calculation

  • MHB
  • Thread starter Amer
  • Start date
  • Tags
    Derivative
In summary, the conversation discusses the possibility of finding the derivative of ln(x) using the definition and a possible proof is provided using the Maclaurin series of ln(1+x). The final result is f'(x) = 1/x.
  • #1
Amer
259
0
Is it possible to find the derivative of ln(x) by the definition how ?

[tex]f'(x) = \lim _ {h\rightarrow 0 } \frac{f(h+x) - f(x)}{h} [/tex]
 
Physics news on Phys.org
  • #2
Amer said:
Is it possible to find the derivative of ln(x) by the definition how ?
See http://www.mathhelpboards.com/f35/problem-week-14-july-2nd-2012-a-1343/#post6686.
 
  • #3
Here is a possible proof.
To prove: $$\lim_{h \to 0} \frac{\ln(x+h)-\ln(x)}{h} = \frac{1}{x}$$
Proof:
$$\lim_{h \to 0} \frac{\ln(x+h)-\ln(x)}{h} = \lim_{h \to 0} \frac{\ln\left(\frac{x+h}{x}\right)}{h} = \lim_{h \to 0} \frac{\ln\left(1+\frac{h}{x}\right)}{h}$$

We can use the maclaurin serie of $\ln(1+x)$ now.
$$\ln\left(1+\frac{h}{x}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\left(\frac{h}{x}\right)^{n+1}$$

Thus
$$\lim_{h \to 0} \frac{\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\left(\frac{h}{x}\right)^{n+1}}{h}$$
$$=\lim_{h \to 0} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}$$
$$= \lim_{h \to 0} \left[\frac{1}{x} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}\right]$$
$$= \frac{1}{x} + \sum_{n=1}^{\infty} \left[ \lim_{h \to 0} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}\right] = \frac{1}{x}$$
 
  • #4
Hello, Amer!

Is it possible to find the derivative of [tex]f(x) \,=\,\ln x[/tex] by the definition? .How?

[tex]f'(x)\:=\:\lim_{h\to0}\frac{f(x+h)- f(x)}{h}[/tex]

[tex]f(x+h) - f(x) \;=\; \ln(x+h) - \ln(x) \;=\;\ln\left(\frac{x+h}{x}\right) \;=\;\ln\left(1 + \frac{h}{x}\right) [/tex][tex]\frac{f(x+h) - f(x)}{h} \;=\;\frac{1}{h}\ln\left(1 + \frac{h}{x}\right) \;=\;\ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}}[/tex]

. . . . . . . . . . . . [tex]=\;\ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}\cdot\frac{x}{x}} \;=\; \ln\left[\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}} [/tex][tex]f'(x) \;=\;\lim_{h\to0}\frac{f(x+h) - f(x)}{h} \;=\;\lim_{h\to0}\left[\ln\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}} [/tex]

Let [tex]u \,=\,\frac{x}{h}[/tex] . . Note: if [tex]h\to0[/tex], then [tex]u \to\infty[/tex]
We have: .[tex]\lim_{u\to\infty}\left[\ln\left(1 + \frac{1}{u}\right)^u\right]^{\frac{1}{x}} \;=\;\ln\left[\underbrace{\lim_{u\to\infty}\left(1 + \frac{1}{u}\right)^u}_{\text{This is }e}\right]^{\frac{1}{x}} [/tex]Therefore: .[tex]f'(x) \;=\;\ln(e)^{\frac{1}{x}} \;=\;\frac{1}{x}\cdot\ln(e) \;=\;\frac{1}{x}[/tex]
 
  • #5
Thanks many :)
 

FAQ: Derivative of ln(x): Definition & Calculation

What is the definition of the derivative of ln(x)?

The derivative of ln(x) is the rate of change of the natural logarithm function at a specific value of x. It represents the slope of the tangent line to the graph of ln(x) at that point.

How do you calculate the derivative of ln(x)?

To calculate the derivative of ln(x), you first need to write the function in the form of f(x) = ln(x). Then, you can use the formula f'(x) = 1/x to find the derivative. For example, if f(x) = ln(x), then f'(x) = 1/x.

What is the significance of the derivative of ln(x)?

The derivative of ln(x) is important in calculus because it helps us understand the instantaneous rate of change of a function. It also allows us to find the maximum and minimum points of a function, which are important in optimization problems.

What is the derivative of ln(x) at x=1?

The derivative of ln(x) at x=1 is equal to 1. This means that the slope of the tangent line to the graph of ln(x) at x=1 is 1. In other words, the rate of change of ln(x) at x=1 is 1.

Can the derivative of ln(x) be negative?

No, the derivative of ln(x) cannot be negative for any value of x. This is because the derivative of ln(x) is always positive or zero, since the natural logarithm function is always increasing.

Similar threads

Back
Top