- #1
fbelotti
- 2
- 0
Hi All,
I'm trying to solve the following derivative with respect to the scalar parameter [itex]\sigma[/itex]
$$\frac{\partial}{\partial \sigma} \ln|\Sigma|,$$
where [itex]\Sigma = (\sigma^2 \Lambda_K)[/itex] and [itex]\Lambda_K[/itex] is the following symmetric tridiagonal [itex]K \times K[/itex] matrix
$$
\Lambda_{K} =
\left(
\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & 0 & \ldots & -1 & 2 \\
\end{array}\right).
$$
Is there a rule for these case?
Thanks in advance for your time.
I'm trying to solve the following derivative with respect to the scalar parameter [itex]\sigma[/itex]
$$\frac{\partial}{\partial \sigma} \ln|\Sigma|,$$
where [itex]\Sigma = (\sigma^2 \Lambda_K)[/itex] and [itex]\Lambda_K[/itex] is the following symmetric tridiagonal [itex]K \times K[/itex] matrix
$$
\Lambda_{K} =
\left(
\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & 0 & \ldots & -1 & 2 \\
\end{array}\right).
$$
Is there a rule for these case?
Thanks in advance for your time.