- #1
karush
Gold Member
MHB
- 3,269
- 5
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$
rewriting...
$\displaystyle\frac{1}{cos^2(2x)}-\frac{sin^2(2x)}{cos^2(2x)}$
$\displaystyle\frac{cos^2(2x)}{cos^2(2x)}=1$
$\displaystyle\frac{d}{dx}(1)=0$
I put this in $W|A$ but there were many complicated steps just to get the same answer
how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$
rewriting...
$\displaystyle\frac{1}{cos^2(2x)}-\frac{sin^2(2x)}{cos^2(2x)}$
$\displaystyle\frac{cos^2(2x)}{cos^2(2x)}=1$
$\displaystyle\frac{d}{dx}(1)=0$
I put this in $W|A$ but there were many complicated steps just to get the same answer
how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$