Derivative of the retarded vector potential

In summary, the given conversation discusses the potential vector for an oscillating electric dipole, including its expression and components such as direction, current, distance, and dipole moment. It also mentions using the Lorentz Gauge and the chain rule to find the derivative of the potential. The final result is expressed as a function of time, distance, and the dipole's components.
  • #1
Salmone
101
13
In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis## where the dipole is oscillating, ##I_0## is the current (##I(t)=I_0cos(\omega t)##), ##d## is the distance between the charges of the dipole and ##r## is the distance between the origin of the system and the point where I want to calculate the potential vector. Let ##\vec{p}=\hat{k}qd=\frac{\hat{k}dI_0}{\omega}sin(\omega t)## be the dipole moment, it is possible to rewrite the potential vector as ##\vec{A}=\frac{\mu_0}{4\pi}\frac{\vec{\dot p(t-r/c)}}{r}## where ##\vec{\dot p}## is the derivative with respect to time.
If we use Lorentz Gauge we have ##-\epsilon_0\mu_0\frac{\partial V}{\partial t}=\vec{\nabla} \cdot \vec{A}##, since ##\vec{A}## is directed along the ##z-axis## we have ##div \vec{A}=\frac{\partial A}{\partial z}## so ##\frac{\partial V}{\partial t}=-\frac{1}{\epsilon_0 \mu_0}\frac{\partial A}{\partial z}##.

The question: how do you do this last derivative?

The result is: ##\frac{\partial V}{\partial t}=\frac{1}{4\pi\epsilon_0} \left( \frac{- \ddot p(t-r/c)}{cr}+\frac{\dot p(t-r/c)}{r^2} \right)\frac{z}{r}##
 
Physics news on Phys.org
  • #2
When you took calculus, did you learn the chain rule?
 
  • Like
Likes vanhees71
Back
Top