- #1
a.mlw.walker
- 148
- 0
Big derivative, just want to make sure I am doing correct thing here.
a is the only changing dimension, r and l are constants
##\theta=\arccos\left(\frac{r^{2}+\left(r+l-a\right)^{2}-l^{2}}{2r\left(r+l-a\right)}\right)##
I want to differentiate ##\frac{d\theta}{da}##
So what I did was using
##\theta=\arccos a##
## cos\theta=a## differentiate this## -sin\theta \frac{d\theta}{da}=1##therefore with trig identities and a rearrange:
##\frac{d\theta}{da}=\frac{-1}{\sqrt{1-a^{2}}}##
where ##a = \left(\frac{r^{2}+\left(r+l-a\right)^{2}-l^{2}}{2r\left(r+l-a\right)}\right)##
So the derivative of theta with respect to a is
##\frac{d \theta}{da}=\frac{-a'} {\sqrt{1-a^2}}##
This involves the quotient rule, and I end up the expression below: I took out a factor of 4 top and bottom of the derivative of a, hence the 3/2 coefficient
##\frac{d\theta}{da}= \frac{ra^2 - (2r^2 - rl )a + (2r^{3}+3lr^{2}##
##+l^{2}r)}{ra^{3}-\frac{3}{2}r^{2}a^{2}+(2r^{3}+3lr^{2}+rl^{2})a-(r^{4}-2r^{3}l-r^{2}l^{2})}##
##\sqrt{1-(\frac{a^{2}-2a(r-l )+(2r^{2}+2rl)}{-2ra + 2r^{2} +2rl})##
Thanks
a is the only changing dimension, r and l are constants
##\theta=\arccos\left(\frac{r^{2}+\left(r+l-a\right)^{2}-l^{2}}{2r\left(r+l-a\right)}\right)##
I want to differentiate ##\frac{d\theta}{da}##
So what I did was using
##\theta=\arccos a##
## cos\theta=a## differentiate this## -sin\theta \frac{d\theta}{da}=1##therefore with trig identities and a rearrange:
##\frac{d\theta}{da}=\frac{-1}{\sqrt{1-a^{2}}}##
where ##a = \left(\frac{r^{2}+\left(r+l-a\right)^{2}-l^{2}}{2r\left(r+l-a\right)}\right)##
So the derivative of theta with respect to a is
##\frac{d \theta}{da}=\frac{-a'} {\sqrt{1-a^2}}##
This involves the quotient rule, and I end up the expression below: I took out a factor of 4 top and bottom of the derivative of a, hence the 3/2 coefficient
##\frac{d\theta}{da}= \frac{ra^2 - (2r^2 - rl )a + (2r^{3}+3lr^{2}##
##+l^{2}r)}{ra^{3}-\frac{3}{2}r^{2}a^{2}+(2r^{3}+3lr^{2}+rl^{2})a-(r^{4}-2r^{3}l-r^{2}l^{2})}##
##\sqrt{1-(\frac{a^{2}-2a(r-l )+(2r^{2}+2rl)}{-2ra + 2r^{2} +2rl})##
Thanks
Last edited by a moderator: