- #1
Vladimir_Kitanov
- 44
- 14
- Homework Statement
- Can we get ##\vec v = \vec \omega \times \vec r## by deriving ##\vec s = \vec \theta \times \vec r## with respect to time?
- Relevant Equations
- Nothing
My try:
##\vec s = \vec \theta \times \vec r##
##\frac {d}{dt} (\vec s) = \frac {d}{dt} (\vec \theta \times \vec r)##
##\vec v = \frac {d}{dt}(\vec \theta) \times \vec r + \vec \theta \times \frac {d}{dt}(\vec r)##
##\vec v = \vec \omega \times \vec r + \vec \theta \times \vec v##
And I realized while writing this that ##\vec \theta \times \frac {d}{dt}(\vec r) = 0## because ##\vec r## is constant.
And at the end we get just ##\vec v = \vec \omega \times \vec r##
##\vec s = \vec \theta \times \vec r##
##\frac {d}{dt} (\vec s) = \frac {d}{dt} (\vec \theta \times \vec r)##
##\vec v = \frac {d}{dt}(\vec \theta) \times \vec r + \vec \theta \times \frac {d}{dt}(\vec r)##
##\vec v = \vec \omega \times \vec r + \vec \theta \times \vec v##
And I realized while writing this that ##\vec \theta \times \frac {d}{dt}(\vec r) = 0## because ##\vec r## is constant.
And at the end we get just ##\vec v = \vec \omega \times \vec r##