- #1
fairy._.queen
- 47
- 0
Hi all!
I must compute a derivative with respect to the components of a unit vector [itex]\hat{p}^{i}[/itex]. In spherical coordinates,
[itex]\hat{p}^{1}=\hat{p}^{1}(\theta,\phi)=\cos\theta \sin\phi[/itex]
I want to express the derivative [itex]\frac{\partial}{\partial\hat{p}^1}[/itex] as a combination of [itex]\frac{\partial}{\partial\theta}[/itex] and [itex]\frac{\partial}{\partial\phi}[/itex].
What I did is:
[itex]\frac{\partial f}{\partial\hat{p}^1}=\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial \hat{p}^1}+\frac{\partial f}{\partial\phi}\frac{\partial\phi}{\partial\hat{p}^1}[/itex]
Since [itex]\frac{\partial\hat{p}^1}{\partial\theta}=-\sin\theta\sin\phi[/itex] and [itex]\frac{\partial\hat{p}^i}{\partial\phi}=\cos\theta \cos\phi[/itex] I thought
[itex]\frac{\partial\theta}{\partial\hat{p}^1}=-\frac{1}{\sin\theta\sin\phi}[/itex] and [itex]\frac{\partial\phi}{\partial\hat{p}^1}=\frac{1}{ \cos\theta\cos\phi}[/itex]
so that the final derivative is
[itex]\frac{\partial f}{\partial\hat{p}^1}=-\frac{1}{\sin\theta\sin\phi}\frac{\partial f}{\partial\theta}+\frac{1}{\cos\theta\cos\phi} \frac{\partial f}{\partial\phi}[/itex]
I would like to know if all this is correct. Thanks in advance!
I must compute a derivative with respect to the components of a unit vector [itex]\hat{p}^{i}[/itex]. In spherical coordinates,
[itex]\hat{p}^{1}=\hat{p}^{1}(\theta,\phi)=\cos\theta \sin\phi[/itex]
I want to express the derivative [itex]\frac{\partial}{\partial\hat{p}^1}[/itex] as a combination of [itex]\frac{\partial}{\partial\theta}[/itex] and [itex]\frac{\partial}{\partial\phi}[/itex].
What I did is:
[itex]\frac{\partial f}{\partial\hat{p}^1}=\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial \hat{p}^1}+\frac{\partial f}{\partial\phi}\frac{\partial\phi}{\partial\hat{p}^1}[/itex]
Since [itex]\frac{\partial\hat{p}^1}{\partial\theta}=-\sin\theta\sin\phi[/itex] and [itex]\frac{\partial\hat{p}^i}{\partial\phi}=\cos\theta \cos\phi[/itex] I thought
[itex]\frac{\partial\theta}{\partial\hat{p}^1}=-\frac{1}{\sin\theta\sin\phi}[/itex] and [itex]\frac{\partial\phi}{\partial\hat{p}^1}=\frac{1}{ \cos\theta\cos\phi}[/itex]
so that the final derivative is
[itex]\frac{\partial f}{\partial\hat{p}^1}=-\frac{1}{\sin\theta\sin\phi}\frac{\partial f}{\partial\theta}+\frac{1}{\cos\theta\cos\phi} \frac{\partial f}{\partial\phi}[/itex]
I would like to know if all this is correct. Thanks in advance!