- #1
Felafel
- 171
- 0
Hi! I think I've managed to solve this problem, but I'd like it to be checked
show that if $$f : A\subset \mathbb{R}\to \mathbb{R}$$ and has both right derivative:
$$f_{+}'(x_0),$$
and left derivative
$$f_{-}'(x_0)$$
in $$x_0\in A$$, then $$f$$
is continuos in
$$x_0.$$
Let's assume $$f_{+}' > f_{-}'$$, as the derivative exists, it means it is $$< \infty$$.
Therefore, $$|f(x)-f(y)|≤f_{+}'|(x-y)|$$ is a Lipschitz equation, and for
$$|f(x)-f(x_0)|≤f_{+}'|(x-x_0)|$$
it is a lipschitz equation in x_0.
Thus, for the lipschitz equation properties, the function is continuos in $$x_0$$
Homework Statement
show that if $$f : A\subset \mathbb{R}\to \mathbb{R}$$ and has both right derivative:
$$f_{+}'(x_0),$$
and left derivative
$$f_{-}'(x_0)$$
in $$x_0\in A$$, then $$f$$
is continuos in
$$x_0.$$
The Attempt at a Solution
Let's assume $$f_{+}' > f_{-}'$$, as the derivative exists, it means it is $$< \infty$$.
Therefore, $$|f(x)-f(y)|≤f_{+}'|(x-y)|$$ is a Lipschitz equation, and for
$$|f(x)-f(x_0)|≤f_{+}'|(x-x_0)|$$
it is a lipschitz equation in x_0.
Thus, for the lipschitz equation properties, the function is continuos in $$x_0$$
Last edited: