- #1
joypav
- 151
- 0
Looking at Munkres "Analysis on Manifolds", it says for $A\subset R^n, f: A \rightarrow R^m$ suppose that $A$ contains a neighborhood of $a$. Then $f$ is differentiable at $a$ if there exists an $n$ by $m$ matrix $B$ such that,
The definition seems a-ok, but I am trying to just work a simple problem so that I can see it in action and I am stuck.
Say $f(x,y)=(xy, x^2)$. Obviously, $f: R^2 \rightarrow R^2$.
And let $B = \left[\begin{array}{c} a & b \\ c & d \end{array}\right]$
We are in $R^2$ so $h = \left[\begin{array}{c}h_1 \\ h_2 \end{array}\right]$.
$f(x+h_1, y+h_2) - f(x,y) = \left[\begin{array}{c}(x+h_1)(y+h_2) \\ (x+h_1)^2 \end{array}\right]-\left[\begin{array}{c}xy \\ x^2 \end{array}\right]=\left[\begin{array}{c}xh_2+yh_1+h_1h_2 \\ 2xh_1+h_1^2 \end{array}\right]$
$B\cdot h = \left[\begin{array}{c} a & b \\ c & d \end{array}\right]\cdot \left[\begin{array}{c}h_1 \\ h_2 \end{array}\right] = \left[\begin{array}{c} ah_1+bh_2 \\ ch_1+dh_2 \end{array}\right]$
$f(x+h_1, y+h_2) - f(x,y) - B\cdot h = \left[\begin{array}{c}xh_2+yh_1+h_1h_2-ah_1-bh_2 \\ 2xh_1+h_1^2-ch_1-dh_2 \end{array}\right]$
We need to choose $a, b, c, d$ so that,
$\frac{1}{\sqrt{h_1^2+h_2^2}} \cdot \left[\begin{array}{c}xh_2+yh_1+h_1h_2-ah_1-bh_2 \\ 2xh_1+h_1^2-ch_1-dh_2 \end{array}\right] \rightarrow 0$ as $(h_1, h_2) \rightarrow 0$
Meaning, we need,
$\frac{xh_2+yh_1+h_1h_2-ah_1-bh_2}{\sqrt{h_1^2+h_2^2}} \rightarrow 0$ as $(h_1, h_2) \rightarrow 0$
and
$\frac{2xh_1+h_1^2-ch_1-dh_2}{\sqrt{h_1^2+h_2^2}} \rightarrow 0$ as $(h_1, h_2) \rightarrow 0$
OKAY, now that that's all out there, I need help! First of all, is there a simple way to figure this out from what I have?
From previous things I've worked on, I believe I can just find $B$ with partial derivatives. So it should be
$B = \left[\begin{array}{c} y & x \\ 2x & 0 \end{array}\right]$
How do I go about getting this? Or do I just need to show that this $B$ will work?
$\frac{f(a+h)-f(a)-Bh}{\left| h \right|}\rightarrow 0$ as $h\rightarrow 0$
($B$ is called the derivative of $f$ at $a$)The definition seems a-ok, but I am trying to just work a simple problem so that I can see it in action and I am stuck.
Say $f(x,y)=(xy, x^2)$. Obviously, $f: R^2 \rightarrow R^2$.
And let $B = \left[\begin{array}{c} a & b \\ c & d \end{array}\right]$
We are in $R^2$ so $h = \left[\begin{array}{c}h_1 \\ h_2 \end{array}\right]$.
$f(x+h_1, y+h_2) - f(x,y) = \left[\begin{array}{c}(x+h_1)(y+h_2) \\ (x+h_1)^2 \end{array}\right]-\left[\begin{array}{c}xy \\ x^2 \end{array}\right]=\left[\begin{array}{c}xh_2+yh_1+h_1h_2 \\ 2xh_1+h_1^2 \end{array}\right]$
$B\cdot h = \left[\begin{array}{c} a & b \\ c & d \end{array}\right]\cdot \left[\begin{array}{c}h_1 \\ h_2 \end{array}\right] = \left[\begin{array}{c} ah_1+bh_2 \\ ch_1+dh_2 \end{array}\right]$
$f(x+h_1, y+h_2) - f(x,y) - B\cdot h = \left[\begin{array}{c}xh_2+yh_1+h_1h_2-ah_1-bh_2 \\ 2xh_1+h_1^2-ch_1-dh_2 \end{array}\right]$
We need to choose $a, b, c, d$ so that,
$\frac{1}{\sqrt{h_1^2+h_2^2}} \cdot \left[\begin{array}{c}xh_2+yh_1+h_1h_2-ah_1-bh_2 \\ 2xh_1+h_1^2-ch_1-dh_2 \end{array}\right] \rightarrow 0$ as $(h_1, h_2) \rightarrow 0$
Meaning, we need,
$\frac{xh_2+yh_1+h_1h_2-ah_1-bh_2}{\sqrt{h_1^2+h_2^2}} \rightarrow 0$ as $(h_1, h_2) \rightarrow 0$
and
$\frac{2xh_1+h_1^2-ch_1-dh_2}{\sqrt{h_1^2+h_2^2}} \rightarrow 0$ as $(h_1, h_2) \rightarrow 0$
OKAY, now that that's all out there, I need help! First of all, is there a simple way to figure this out from what I have?
From previous things I've worked on, I believe I can just find $B$ with partial derivatives. So it should be
$B = \left[\begin{array}{c} y & x \\ 2x & 0 \end{array}\right]$
How do I go about getting this? Or do I just need to show that this $B$ will work?