- #1
lfdahl
Gold Member
MHB
- 749
- 0
Let $S_n(k)$ be defined by:
$S_n(k) = 1 + 2k+3k^2+...+(n+1)k^n$, where $|k| < 1$ and $n \in \Bbb{N}$.
Derive a closed form for $S_n(k)$ and find the limit: $$\lim_{{n}\to{\infty}}S_n(k)$$.
$S_n(k) = 1 + 2k+3k^2+...+(n+1)k^n$, where $|k| < 1$ and $n \in \Bbb{N}$.
Derive a closed form for $S_n(k)$ and find the limit: $$\lim_{{n}\to{\infty}}S_n(k)$$.