Derive an expression for the radial charge distribution of an E field

AI Thread Summary
The discussion focuses on deriving an expression for the radial charge distribution from the electric field. Participants confirm the cancellation of certain terms in the del equation due to the unidirectional nature of the electric field. This leads to the simplified equation for the divergence of the electric field. The application of Gauss's law is discussed, specifically isolating the charge density, ρ(r), to derive an expression. The final result obtained is ρ(r) = 2E₀ε₀/r, which is validated by other participants.
Jaccobtw
Messages
163
Reaction score
32
Homework Statement
Consider a spherical distribution of charge that creates a uniform, radial electric field described by: ##\vec{E}=E_o\hat{r}##

Use the differential form of Gauss's Law to derive an expression for the radial charge distribution, ##\rho##, that will create this field. You will need the divergence in spherical coordinates: ##\nabla \cdot \vec{V}=\frac{1}{r^2}\frac{\partial}{\partial{r}}(r^2 V_r)+\frac{1}{r\sin[{\theta}]}\frac{\partial}{\partial{\theta}}(\sin[{\theta}]V_{\theta})+\frac{1}{r\sin[{\theta}]}\frac{\partial}{\partial{\phi}}(V_{\phi})##
Enter your mathematical expression for ρ(r) in terms of ##\epsilon_o, E_o ##, and ##r##
Relevant Equations
$$\nabla \cdot \vec{V}=\frac{1}{r^2}\frac{\partial}{\partial{r}}(r^2 V_r)+\frac{1}{r\sin[{\theta}]}\frac{\partial}{\partial{\theta}}(\sin[{\theta}]V_{\theta})+\frac{1}{r\sin[{\theta}]}\frac{\partial}{\partial{\phi}}(V_{\phi}) $$
I know we're supposed to attempt a solution but I'm honestly super confused here. I think the second an third terms of the del equation can be cancelled out because there is only an E field in the r hat direction, so no e field in the theta and phi directions. That leaves us with ##\nabla \cdot \vec{E}=\frac{1}{r^2}\frac{\partial}{\partial{r}}(r^2 E_r)##. The question says to write an expression for ##\rho (r)##. I know gauss' law has the differential form of itself equaling ##\frac{\rho}{\epsilon_o}##. would you isolate ##\rho## to get an expression for ##\rho (r)##? Thanks for your help
 
Last edited:
Physics news on Phys.org
Jaccobtw said:
I think the second an third terms of the del equation can be cancelled out because there is only an E field in the r hat direction, so no e field in the theta and phi directions.
Yes.

Jaccobtw said:
That leaves us with ##\nabla \cdot \vec{E}=\frac{1}{r^2}\frac{\partial}{\partial{r}}(r^2 V_r)##.
The symbol ##V_r## on the right side would be better written as ##E_r##.

Jaccobtw said:
The question says to write an expression for ##\rho (r)##. I know gauss' law has the differential form of itself equaling ##\frac{\rho}{\epsilon_o}##. would you isolate ##\rho## to get an expression for ##\rho (r)##?
Yes. See what you get.
 
  • Like
Likes topsquark and Jaccobtw
TSny said:
Yes.The symbol ##V_r## on the right side would be better written as ##E_r##.Yes. See what you get.
Thank you. I got ##\frac{2 E_o \epsilon_o}{r}##
 
Jaccobtw said:
Thank you. I got ##\frac{2 E_o \epsilon_o}{r}##
Looks good.
 
  • Like
Likes topsquark and Jaccobtw
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top