- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- complex analysis
- Relevant Equations
- .
##\mathbb{D}## is open. Let ##\mathbb{A}:=\{z:|z-i/2|=\frac{1}{9}\}##. ##\mathbb{A}## is closed and contained in ##\mathbb{D}##. ##f## is analytic in ##\mathbb{D}##, so ##f## is analytic on the interior to and on ##\mathbb{A}##.
By the Cauchy integral formula, ##f^{(4)}## exists at every point on the interoir of ##\mathbb{A}##. ##z=\frac{i}{2}## is in ##\mathbb{A}##, so ##f^{(4)}## exists at ##z=\frac{i}{2}##.
$$f^{(4)}=\frac{4!}{2\pi i}\int_\mathbb{A}\frac{f(z)}{(z-\frac{i}{2})^5}dz$$
There is no way to get an upper bound of ##f^{(4)}## using to Cauchy integral formula. If ##f(i/2)\neq 0## the integrand goes to ##\infty## as ##z\rightarrow i/2## but We aren't told that ##f(i/2)\neq 0##.
Last edited: