- #1
Math100
- 802
- 221
- Homework Statement
- Derive the following congruence:
## a^{21}\equiv a\pmod {15} ## for all ## a ##.
[Hint: By Fermat's theorem, ## a^{5}\equiv a\pmod {5} ##.]
- Relevant Equations
- None.
Proof:
Observe that ## 15=3\cdot 5 ##.
Applying the Fermat's theorem produces:
## a^{3}\equiv a\pmod {3} ## and ## a^{5}\equiv a\pmod {5} ##.
Thus
\begin{align*}
&(a^{3})^{7}\equiv a^{7}\pmod {3}\implies a^{21}\equiv [(a^{3})^{2}\cdot a]\pmod {3}\implies a^{21}\equiv a\pmod {3}\\
&(a^{5})^{4}\equiv a^{4}\pmod {5}\implies a^{20}\equiv a^{4}\pmod {5}\implies a^{21}\equiv a\pmod {5}.\\
\end{align*}
Therefore, ## a^{21}\equiv a\pmod {15} ## for all ## a ##.
Observe that ## 15=3\cdot 5 ##.
Applying the Fermat's theorem produces:
## a^{3}\equiv a\pmod {3} ## and ## a^{5}\equiv a\pmod {5} ##.
Thus
\begin{align*}
&(a^{3})^{7}\equiv a^{7}\pmod {3}\implies a^{21}\equiv [(a^{3})^{2}\cdot a]\pmod {3}\implies a^{21}\equiv a\pmod {3}\\
&(a^{5})^{4}\equiv a^{4}\pmod {5}\implies a^{20}\equiv a^{4}\pmod {5}\implies a^{21}\equiv a\pmod {5}.\\
\end{align*}
Therefore, ## a^{21}\equiv a\pmod {15} ## for all ## a ##.