- #1
LCSphysicist
- 646
- 162
- Homework Statement
- .
- Relevant Equations
- .
We need to derive the Maxwell "with source" equation, of course, using the tensor equation $$\partial F^{\mu v}/ \partial x^{v} = j^{\mu}/c$$
D is the spacetime dimension
To do this, it was said to us vary the action wrt the ##A^{\mu}##
The first term just vanish, and I want to evaluate the third term.
$$\frac{-1}{4c} \int d^{D}x (\partial_{\mu} \delta A_{v} - \partial_{v} \delta A_{\mu})(\partial^{\mu} \delta A^{v} - \partial^{v} \delta A^{\mu})$$
$$\frac{-1}{4c} \int d^{D}x 2((\partial_{\mu} \delta A_{v})(\partial^{\mu} \delta A^{v}) - (\partial_{\mu} \delta A_{v})(\partial^{v} \delta A^{\mu})$$
$$\frac{-1}{2c} \int d^{D}x (\partial_{\mu} \delta A_{v}) \delta F^{\mu v} *$$
After that equation, the things get pretty messy... My attempt was to find somewhere a way to apply the divergence theorem and get the flux, after that i would get the charge density and so the current, but i was not able to do that
OBS: in * i am considering that ##\partial \delta A = \delta \partial A##, but i am not sure 'bout that.
D is the spacetime dimension
To do this, it was said to us vary the action wrt the ##A^{\mu}##
The first term just vanish, and I want to evaluate the third term.
$$\frac{-1}{4c} \int d^{D}x (\partial_{\mu} \delta A_{v} - \partial_{v} \delta A_{\mu})(\partial^{\mu} \delta A^{v} - \partial^{v} \delta A^{\mu})$$
$$\frac{-1}{4c} \int d^{D}x 2((\partial_{\mu} \delta A_{v})(\partial^{\mu} \delta A^{v}) - (\partial_{\mu} \delta A_{v})(\partial^{v} \delta A^{\mu})$$
$$\frac{-1}{2c} \int d^{D}x (\partial_{\mu} \delta A_{v}) \delta F^{\mu v} *$$
After that equation, the things get pretty messy... My attempt was to find somewhere a way to apply the divergence theorem and get the flux, after that i would get the charge density and so the current, but i was not able to do that
OBS: in * i am considering that ##\partial \delta A = \delta \partial A##, but i am not sure 'bout that.