- #1
Amin2014
- 113
- 3
I'm a bit confused about how the work-energy theorem for a single particle can be extended into the general law of conservation of energy for the macroscopic system, particularly the point where we divide the kinetic energy of the system into macroscopic kinetic energy and internal kinetic energy, and also the potential energy of the system into macroscopic and internal potential energy (and then define internal energy as the sum of internal potential and kinetic energies).
Can someone start from the familiar work-energy theorem, written for each individual particle of the system, and step by step derive the conventional form of the law of conservation of energy for the microscopic system?
And explain where ever you insert a new definition or experimental law (like heat and joule experiment). Thanks!
Can someone start from the familiar work-energy theorem, written for each individual particle of the system, and step by step derive the conventional form of the law of conservation of energy for the microscopic system?
And explain where ever you insert a new definition or experimental law (like heat and joule experiment). Thanks!