- #1
squenshl
- 479
- 4
Consider a heat equation for the temperature u of a rod of length 1:
ut = uxx, 0 < x < 1, t > 0 with boundary conditions ux(0,t) = 0 & u(1,t) = 0. I derived Xn(x) = cos((n+1/2)[tex]\pi[/tex]x) using separation of variables.
How do I show that [tex]\int_{0}^1[/tex] Xn(x)Xm(x) dx = 1/2 if m = n and 0 if m [tex]\neq[/tex] n.
I used the product to sum formula: cos(A)cos(B) = cos(A+B)/2 + cos(A-B)/2 to get 1/2cos((n+m+1)[tex]\pi[/tex]x) 1/2cos((n-m)[tex]\pi[/tex]x) but I am stuck after that. Someone help, am I even on the right track.
ut = uxx, 0 < x < 1, t > 0 with boundary conditions ux(0,t) = 0 & u(1,t) = 0. I derived Xn(x) = cos((n+1/2)[tex]\pi[/tex]x) using separation of variables.
How do I show that [tex]\int_{0}^1[/tex] Xn(x)Xm(x) dx = 1/2 if m = n and 0 if m [tex]\neq[/tex] n.
I used the product to sum formula: cos(A)cos(B) = cos(A+B)/2 + cos(A-B)/2 to get 1/2cos((n+m+1)[tex]\pi[/tex]x) 1/2cos((n-m)[tex]\pi[/tex]x) but I am stuck after that. Someone help, am I even on the right track.