- #1
Rizlablack
- 8
- 0
hey guys!I really need help in getting from the real classical solution of the Klein Gordon equation to the expression of operators!
I start from:
[itex]\varphi(x) = \int \frac{d^3 k}{(2\pi)^3 2\omega} [a(\textbf{k}) e^{ikx} + a^{*}(\textbf{k}) e^{-ikx}][/itex]
and should arrive with
[itex]\int d^3 x \: e^{-ikx} \varphi(x) = \frac{1}{2\omega} a(\textbf{k}) + \frac{1}{2\omega} e^{2i\omega t}a(\textbf{k})[/itex]
then the rest is easy!just not very good with inverse trasformations! ^_^
thank you all!
I start from:
[itex]\varphi(x) = \int \frac{d^3 k}{(2\pi)^3 2\omega} [a(\textbf{k}) e^{ikx} + a^{*}(\textbf{k}) e^{-ikx}][/itex]
and should arrive with
[itex]\int d^3 x \: e^{-ikx} \varphi(x) = \frac{1}{2\omega} a(\textbf{k}) + \frac{1}{2\omega} e^{2i\omega t}a(\textbf{k})[/itex]
then the rest is easy!just not very good with inverse trasformations! ^_^
thank you all!