- #1
Rob2024
- 15
- 2
- Homework Statement
- Poynting Theorem states $$- \vec J \cdot \vec E - \nabla \cdot {\vec S} = \frac{\partial u}{\partial t}$$ where ##\vec J## is current density, ##\vec S## is the Poynting vector and ##u = \frac{1}{2} ( \epsilon_0 E^2 + \frac{B^2}{\mu_0}) ## is the electromagnetic energy density at a point. What is ##\vec J## at a point where ##\vec B = 0## according to Poynting Theorem? (Hint: you may need the identity: ##\nabla (\vec A \times \vec B) = \vec B \cdot \nabla \times A - \vec A \cdot \nabla \times \vec B##)
- Relevant Equations
- $$- \vec J \cdot \vec E - \nabla \cdot {\vec S} = \frac{ \partial u}{\partial t}$$
$$\nabla (\vec A \times \vec B) = \vec B \cdot \nabla \times A - \vec A \cdot \nabla \times \vec B$$
Here is the solution:
From vector identity,
$$\nabla (\vec A \times \vec B) = \vec B \cdot \nabla \times A - \vec A \cdot \nabla \times \vec B $$
If ##\vec B = 0##, then $$\nabla \vec S = \nabla \frac{\vec E \times \vec B}{\mu_0} = \frac{1}{\mu_0} (\nabla \times E \cdot \vec B - \cdot E \cdot \nabla \times \vec B) = - \frac{1}{\mu_0} \cdot E \cdot \nabla \times\vec B$$
Then the Poynting Theorem becomes,
$$- \vec J \cdot \vec E + \frac{1}{\mu_0} \vec E \cdot \nabla \times \vec B = \frac{\partial u}{\partial t} $$
$$ \vec E \cdot ( - \vec J + \frac{1}{\mu_0} \nabla \times \vec B) = \epsilon_0 \vec E \cdot \frac{\partial \vec E}{\partial t} + \frac{\vec B}{\mu_0} \cdot \frac {\partial \vec B}{\partial t}$$
$$ \vec E \cdot ( - \vec J + \frac{1}{\mu_0} \nabla \times \vec B) = \epsilon_0 \vec E \cdot \frac{\partial \vec E}{\partial t}$$
$$ - \vec J + \frac{1}{\mu_0} \nabla \times \vec B = \epsilon_0 \cdot \frac{\partial \vec E}{\partial t}$$
$$\nabla \times \vec B = \mu_0 \vec J + \epsilon_0 \mu_0 \cdot \frac{\partial \vec E}{\partial t}$$
Therefore,
$$\vec J = \frac{1}{\mu_0} \nabla \times\vec B - \epsilon_0 \cdot \frac{\partial \vec E}{\partial t}$$
When I looked through the solution I realized there is a caveat in the above proof, such that if the vector ##(- \vec J + \frac{1}{\mu_0} \nabla \times \vec B - \epsilon_0 \frac{\partial \vec E}{\partial t})## is perpendicular to ##\vec E##, the resulting dot product can still be 0,
$$\vec E \cdot (- \vec J + \frac{1}{\mu_0} \nabla \times \vec B - \epsilon_0 \frac{\partial \vec E}{\partial t}) = 0$$
Is there a way to show, those two vectors cannot be perpendicular in an electromagnetic wave not knowing the Faraday's law (in addition to the condition ##\vec B = 0 ##)? Thanks,
From vector identity,
$$\nabla (\vec A \times \vec B) = \vec B \cdot \nabla \times A - \vec A \cdot \nabla \times \vec B $$
If ##\vec B = 0##, then $$\nabla \vec S = \nabla \frac{\vec E \times \vec B}{\mu_0} = \frac{1}{\mu_0} (\nabla \times E \cdot \vec B - \cdot E \cdot \nabla \times \vec B) = - \frac{1}{\mu_0} \cdot E \cdot \nabla \times\vec B$$
Then the Poynting Theorem becomes,
$$- \vec J \cdot \vec E + \frac{1}{\mu_0} \vec E \cdot \nabla \times \vec B = \frac{\partial u}{\partial t} $$
$$ \vec E \cdot ( - \vec J + \frac{1}{\mu_0} \nabla \times \vec B) = \epsilon_0 \vec E \cdot \frac{\partial \vec E}{\partial t} + \frac{\vec B}{\mu_0} \cdot \frac {\partial \vec B}{\partial t}$$
$$ \vec E \cdot ( - \vec J + \frac{1}{\mu_0} \nabla \times \vec B) = \epsilon_0 \vec E \cdot \frac{\partial \vec E}{\partial t}$$
$$ - \vec J + \frac{1}{\mu_0} \nabla \times \vec B = \epsilon_0 \cdot \frac{\partial \vec E}{\partial t}$$
$$\nabla \times \vec B = \mu_0 \vec J + \epsilon_0 \mu_0 \cdot \frac{\partial \vec E}{\partial t}$$
Therefore,
$$\vec J = \frac{1}{\mu_0} \nabla \times\vec B - \epsilon_0 \cdot \frac{\partial \vec E}{\partial t}$$
When I looked through the solution I realized there is a caveat in the above proof, such that if the vector ##(- \vec J + \frac{1}{\mu_0} \nabla \times \vec B - \epsilon_0 \frac{\partial \vec E}{\partial t})## is perpendicular to ##\vec E##, the resulting dot product can still be 0,
$$\vec E \cdot (- \vec J + \frac{1}{\mu_0} \nabla \times \vec B - \epsilon_0 \frac{\partial \vec E}{\partial t}) = 0$$
Is there a way to show, those two vectors cannot be perpendicular in an electromagnetic wave not knowing the Faraday's law (in addition to the condition ##\vec B = 0 ##)? Thanks,
Last edited: