Deriving Fourier Transform of Operators for Relativistic Quantum Field Theory

In summary: PS: I've been studying a really similar problem (M&S chapter 1) and they indeed make the student to first derive and expression for ##a##. I am trying to solve this problem in a completely analogous way and any help would be highly appreciated
  • #1
JD_PM
1,131
158
Homework Statement
Given the commutation relations



\begin{equation*}
[\chi(\eta, \vec x), \chi(\eta, \vec y)] = [\dot \chi(\eta, \vec x), \dot \chi(\eta, \vec y)] = 0,
\end{equation*}



\begin{equation*}
[\chi(\eta, \vec x), \dot \chi(\eta, \vec y)] = i \delta(\vec x - \vec y)
\end{equation*}



Where ##\eta## stands for conformal time and ##\chi## is given by



\begin{equation}
\chi = \int \frac{d^3 k}{(2 \pi)^{3/2}} \left( a_{\vec k} \chi_{\vec k} e^{i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\chi^*_{\vec k} e^{-i \vec k \cdot \vec x} \right) \tag{1}
\end{equation}


Show that



\begin{equation*}
[a_{\vec k}, a_{\vec k'}]=0, \quad [a_{\vec k}, a_{\vec k'}^{\dagger}]= \delta^{(3)}(\vec k -\vec k')
\end{equation*}
Relevant Equations
N/A
I would say we first need to take the inverse Fourier transform of ##\chi## and associated quantities i.e.

\begin{equation*}
\chi_{\vec k} = \int d^3 \vec x \left( a_{\vec k} \chi e^{-i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\chi^* e^{i \vec k \cdot \vec x} \right) \tag{2}
\end{equation*}

\begin{equation}
\dot \chi_{\vec k} = \int d^3 \vec x \left( a_{\vec k} \dot \chi e^{-i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\dot \chi^* e^{i \vec k \cdot \vec x} \right) \tag{3}
\end{equation}

\begin{equation}
\chi_{\vec k}^* = \int d^3 \vec x \left( a_{\vec k}^{\dagger} \chi^* e^{i \vec k \cdot \vec x} + a_{\vec k} \chi e^{-i \vec k \cdot \vec x} \right) \tag{4}
\end{equation}

\begin{equation}
\dot \chi_{\vec k}^* = \int d^3 \vec x \left( a_{\vec k}^{\dagger} \dot \chi^* e^{i \vec k \cdot \vec x} + a_{\vec k} \dot \chi e^{-i \vec k \cdot \vec x} \right) \tag{5}
\end{equation}

At this point I should perform a linear combination of ##(2), (3), (4), (5)##, obtaining ##a_{\vec k}## in terms of ##\chi## and ##\dot \chi## (as well as ##a_{\vec k}^{\dagger}## in terms of ##\chi## and ##\dot \chi##).

However, I do not see such linear combination. Might you please shed some light? I should be able to continue once I get such expressions.

Thank you! :biggrin:
 
Physics news on Phys.org
  • #2
I haven't worked out the problem, but what do you get if you plug (1) and its derivative into the commutation relations? It's something you could try.
 
  • #3
Hi @vela, my apologies for the late reply.

That is an approach we could indeed try but I've been hinted to first find ##a_{\vec k}## in terms of ##\chi## and ##\dot \chi##. The latest I've been trying is assuming the ansatz

$$a = \int d^3 x (b(k, \eta) \chi_{\vec k}(x) + c(k, \eta) \dot{\chi}_{\vec k}(x)) e^{-ik \cdot x} \tag{*}$$

Then plugging ##(2)## and ##(3)## into ##(*)##. Doing the same with the conjugate of ##(*)## should be enough to find the functions ##b(k, \eta)## and ##c(k, \eta)## but I am not succeeding.

My question is, does this method look correct? If yes I'll post all steps so that we find my mistake.

PS: I've been studying a really similar problem (M&S chapter 1) and they indeed make the student to first derive and expression for ##a##. I am trying to solve this problem in a completely analogous way and any help would be highly appreciated

JSQDJSOQJDSJQDSQDIODQS.png


Solution
jdioqjidsqjdojqidoqs.png
MS.2.png

KJDQDJSQIODJQSIDOSQSJD.png

MS.3.png
 
  • #4
In your original post, are the exponentials supposed to be ##e^{i \vec k \cdot \vec x}## where both ##\vec k## and ##\vec x## are three-vectors, or ##e^{i k \cdot x}## where ##k \cdot x = k_{\mu}x^{\mu}##? If it's not the latter, where does the dependence on ##\eta## come in?

(It's been over 20 years since I've done calculations of this sort, so I'm just kind of throwing stuff out there for you to think about.)
 
  • Like
Likes JD_PM
  • #5
I think @vela is right, if your expression depends on ##e^{i\vec{k}\vec{x}}## then shouldn't ##\dot{\chi}=0##?
I would propose that, first of all, you compute the expression for ##\dot{\chi}(x, t)## in terms of ##a## and ##\chi_k##.
 
  • Like
Likes JD_PM
  • #6
vela said:
In your original post, are the exponentials supposed to be ##e^{i \vec k \cdot \vec x}## where both ##\vec k## and ##\vec x## are three-vectors, or ##e^{i k \cdot x}## where ##k \cdot x = k_{\mu}x^{\mu}##? If it's not the latter, where does the dependence on ##\eta## come in?
It is indeed not the latter case, that is why I am struggling to follow the same approach M&S used to solve the analogous problem.

The ##\eta## dependence comes from how ##\chi## is defined i.e. ##\chi := a \delta \phi##, where ##a## is simply a function of time ##\eta## and ##\delta \phi## is a function of time ##\eta## and space ##x##.

Here's some background information

BG.INFO.png

BG.INFO.1.png


vela said:
(It's been over 20 years since I've done calculations of this sort, so I'm just kind of throwing stuff out there for you to think about.)

No problem, your help is appreciated :smile:
 
  • #7
Hi @Gaussian97 is nice to come across you again :smile:

Gaussian97 said:
I think @vela is right, if your expression depends on ##e^{i\vec{k}\vec{x}}## then shouldn't ##\dot{\chi}=0##?

I do not think so. It is true that the time derivative does not involve the exponential but it does hit ##\chi_{\vec k}## (which is defined ##\chi := a \delta \phi##) so we get

\begin{equation*}
\dot \chi = \int \frac{d^3 k}{(2 \pi)^{3/2}} \left( a_{\vec k} \dot \chi_{\vec k} e^{i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\dot \chi^*_{\vec k} e^{-i \vec k \cdot \vec x} \right) \neq 0
\end{equation*}

Gaussian97 said:
I would propose that, first of all, you compute the expression for ##\dot{\chi}(x, t)## in terms of ##a## and ##\chi_k##.

I think you are hinting at the same approach I wrote at the bottom of my OP: to obtain ##a_{\vec k}## in terms of ##\chi## and ##\dot \chi##. The issue is that I do not see the particular linear combination one should take to get such an expression.
 
  • #8
Mmm... Okay, then I have no idea how to do it.
One idea could be to compute ##\ddot{\chi}## and use equation 43, I don't think this will give any useful formula, but you can try it if you want.

Another idea is to prove the opposite, so starting with the commutator for the ##a## prove the commutator for the fields, maybe this can give you some intuition on the intermediate steps you need to prove first.
 
  • Like
Likes JD_PM
  • #9
Gaussian97 said:
Another idea is to prove the opposite, so starting with the commutator for the ##a## prove the commutator for the fields, maybe this can give you some intuition on the intermediate steps you need to prove first.

I found the reverse statement much easier to prove, as it is more plugging-and-chugging/algorithmic.

Let us show ##[\chi(\vec x), \dot \chi (\vec y)] = i \delta(\vec x - \vec y)##. Plugging the given mode expansion for ##\chi## (and ##\dot \chi##)

\begin{align*}
[\chi(x), \dot\chi(y)] &= \int \frac{d^3 \vec k d^3 \vec k'}{(2\pi)^3}\Big( a_{\vec k}a_{\vec k'}\chi_{\vec k} \dot \chi_{\vec k'} e^{i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + a_{\vec k}^{\dagger} a_{\vec k'}^{\dagger} \chi_{\vec k}^* \dot \chi_{\vec k'}^* e^{-i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + a_{\vec k}a_{\vec k'}^{\dagger}\chi_{\vec k} \dot \chi_{\vec k'}^* e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} + a_{\vec k}^{\dagger} a_{\vec k'}\chi_{\vec k}^* \dot\chi_{\vec k'} e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)}\\
&-a_{\vec k'}a_{\vec k} \dot \chi_{\vec k'} \chi_{\vec k} e^{i(\vec k' \cdot \vec y + \vec k \cdot \vec x)} - a_{\vec k'}^{\dagger} a_{\vec k}^{\dagger} \dot \chi_{\vec k'}^* \chi_{\vec k}^* e^{-i(\vec k' \cdot \vec y + \vec k \cdot \vec x)} - a_{\vec k'}^{\dagger}a_{\vec k} \dot \chi_{\vec k'}^* \chi_{\vec k} e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} - a_{\vec k'}a_{\vec k}^{\dagger} \dot\chi_{\vec k'} \chi_{\vec k}^* e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)}\Big) \\
&= \int \frac{d^3 \vec k d^3 \vec k'}{(2\pi)^3}\Big( [a_k, a_{k'}]\chi_{\vec k} \dot \chi_{\vec k'} e^{i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + [a_k^{\dagger}, a_{k'}^{\dagger}]\chi_{\vec k}^* \dot \chi_{\vec k'}^* e^{-i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + [a_k, a_{k'}^{\dagger}]\chi_{\vec k} \dot \chi_{\vec k'}^* e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} + [a_k^{\dagger}, a_{k'}]\chi_{\vec k}^* \dot\chi_{\vec k'} e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)} \Big)\\
&= \int \frac{d^3 \vec k d^3 \vec k'}{(2\pi)^3} \left( \delta^{(3)}(k-k')\chi_{\vec k} \dot \chi_{\vec k'}^* e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} - \delta^{(3)}(k-k')\chi_{\vec k}^* \dot\chi_{\vec k'} e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)} \right) \\
&= \int \frac{d^3 \vec k}{(2\pi)^3} \left( \chi_{\vec k} \dot \chi_{\vec k}^* e^{i \vec k \cdot( \vec x - \vec y)} - \underbrace{\chi_{\vec k}^* \dot\chi_{\vec k} e^{-i \vec k \cdot (\vec x - \vec y)}}_{\text{Next we use} \ \vec k \to -\vec k} \right)\\
&= \int \frac{d^3 \vec k}{(2\pi)^3} \left( \chi_{\vec k} \dot \chi_{\vec k}^* - \chi_{-\vec k}^* \dot\chi_{-\vec k} \right) e^{i \vec k \cdot( \vec x - \vec y)} \\
&= i \int \frac{d^3 \vec k}{(2\pi)^3} e^{i \vec k \cdot( \vec x - \vec y)}\\
&= i \delta^{(3)}(\vec x - \vec y)
\end{align*}

Where I used the given identity in the lecture notes ## \chi_{\vec k} \dot \chi_{\vec k}^* - \chi_{-\vec k}^* \dot \chi_{-\vec k} = i##
 
  • #10
Gaussian97 said:
Mmm... Okay, then I have no idea how to do it.
If you have the time and motivation for this particular problem I would kindly suggest to have a look at #3, where I posted a really similar problem and its solution (M&S 3.1; instead of ##\chi## field we deal with the KG field).

If not I completely understand and hope to come across you in another thread soon.

To prove the original statement of this thread I am convinced it has to be possible to follow essentially the same steps one needs to solve M&S 3.1. These are

1) Find the explicit expression of ##a## in terms of ##\chi## and ##\dot \chi## (for us it is a bit harder because we are not given the explicit expression of ##a## in terms of ##\chi## and ##\dot \chi##).

2) Evaluate the ##a## commutators with the expression obtained at 1).

So the issue is 1). Studying how it is done for 3.1. one sees that, when taking the time derivative of the KG field, as the Fourier-expansion exponentials of the KG field depend on time, we can essentially take the linear combination ##\phi + \dot \phi## and we get the desired expression. However, in our particular problem this "trick" does not work because, as you both noticed, the Fourier-expansion exponentials of the ##\chi## do not depend on time... So we need another "trick".
 
  • #11
JD_PM said:
I found the reverse statement much easier to prove, as it is more plugging-and-chugging/algorithmic.

Let us show ##[\chi(\vec x), \dot \chi (\vec y)] = i \delta(\vec x - \vec y)##. Plugging the given mode expansion for ##\chi## (and ##\dot \chi##)

\begin{align*}
[\chi(x), \dot\chi(y)] &= \int \frac{d^3 \vec k d^3 \vec k'}{(2\pi)^3}\Big( a_{\vec k}a_{\vec k'}\chi_{\vec k} \dot \chi_{\vec k'} e^{i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + a_{\vec k}^{\dagger} a_{\vec k'}^{\dagger} \chi_{\vec k}^* \dot \chi_{\vec k'}^* e^{-i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + a_{\vec k}a_{\vec k'}^{\dagger}\chi_{\vec k} \dot \chi_{\vec k'}^* e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} + a_{\vec k}^{\dagger} a_{\vec k'}\chi_{\vec k}^* \dot\chi_{\vec k'} e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)}\\
&-a_{\vec k'}a_{\vec k} \dot \chi_{\vec k'} \chi_{\vec k} e^{i(\vec k' \cdot \vec y + \vec k \cdot \vec x)} - a_{\vec k'}^{\dagger} a_{\vec k}^{\dagger} \dot \chi_{\vec k'}^* \chi_{\vec k}^* e^{-i(\vec k' \cdot \vec y + \vec k \cdot \vec x)} - a_{\vec k'}^{\dagger}a_{\vec k} \dot \chi_{\vec k'}^* \chi_{\vec k} e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} - a_{\vec k'}a_{\vec k}^{\dagger} \dot\chi_{\vec k'} \chi_{\vec k}^* e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)}\Big) \\
&= \int \frac{d^3 \vec k d^3 \vec k'}{(2\pi)^3}\Big( [a_k, a_{k'}]\chi_{\vec k} \dot \chi_{\vec k'} e^{i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + [a_k^{\dagger}, a_{k'}^{\dagger}]\chi_{\vec k}^* \dot \chi_{\vec k'}^* e^{-i(\vec k \cdot \vec x + \vec k' \cdot \vec y)} + [a_k, a_{k'}^{\dagger}]\chi_{\vec k} \dot \chi_{\vec k'}^* e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} + [a_k^{\dagger}, a_{k'}]\chi_{\vec k}^* \dot\chi_{\vec k'} e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)} \Big)\\
&= \int \frac{d^3 \vec k d^3 \vec k'}{(2\pi)^3} \left( \delta^{(3)}(k-k')\chi_{\vec k} \dot \chi_{\vec k'}^* e^{i(\vec k \cdot \vec x - \vec k' \cdot \vec y)} - \delta^{(3)}(k-k')\chi_{\vec k}^* \dot\chi_{\vec k'} e^{i(-\vec k \cdot \vec x + \vec k' \cdot \vec y)} \right) \\
&= \int \frac{d^3 \vec k}{(2\pi)^3} \left( \chi_{\vec k} \dot \chi_{\vec k}^* e^{i \vec k \cdot( \vec x - \vec y)} - \underbrace{\chi_{\vec k}^* \dot\chi_{\vec k} e^{-i \vec k \cdot (\vec x - \vec y)}}_{\text{Next we use} \ \vec k \to -\vec k} \right)\\
&= \int \frac{d^3 \vec k}{(2\pi)^3} \left( \chi_{\vec k} \dot \chi_{\vec k}^* - \chi_{-\vec k}^* \dot\chi_{-\vec k} \right) e^{i \vec k \cdot( \vec x - \vec y)} \\
&= i \int \frac{d^3 \vec k}{(2\pi)^3} e^{i \vec k \cdot( \vec x - \vec y)}\\
&= i \delta^{(3)}(\vec x - \vec y)
\end{align*}

Where I used the given identity in the lecture notes ## \chi_{\vec k} \dot \chi_{\vec k}^* - \chi_{-\vec k}^* \dot \chi_{-\vec k} = i##
Mmm... Interesting, at least now we know the relation ## \chi_{\vec k} \dot \chi_{\vec k}^* - \chi_{-\vec k}^* \dot \chi_{-\vec k} = i##, maybe that can help, although I don't see how.
Just in case, have you done the other 3 commutators? Maybe there appear some other interesting relations that can help us.
 
  • #12
JD_PM said:
1) Find the explicit expression of ##a## in terms of ##\chi## and ##\dot \chi## (for us it is a bit harder because we are not given the explicit expression of ##a## in terms of ##\chi## and ##\dot \chi##).

I asked for a hint and the answer should look as follows

\begin{equation*}
a_{\vec k} = -i \int d^3 \vec x \left[ \dot \chi_{\vec k}^*(\eta) \chi(\eta, \vec x) -\chi_{\vec k}^*(\eta) \dot \chi(\eta, \vec x) \right] e^{-i \vec k \cdot \vec x}
\end{equation*}

\begin{equation*}
a_{\vec k}^{\dagger} = i \int d^3 \vec x \left[ \dot \chi_{\vec k}(\eta) \chi(\eta, \vec x) -\chi_{\vec k}(\eta) \dot \chi(\eta, \vec x) \right] e^{i \vec k \cdot \vec x}
\end{equation*}

How to get these expressions still remains a mystery to me [...]
 
  • #13
Ok, so now you should be able to prove the commutation relations, right?
 
  • #14
JD_PM said:
I asked for a hint and the answer should look as follows

\begin{equation*}
a_{\vec k} = -i \int d^3 \vec x \left[ \dot \chi_{\vec k}^*(\eta) \chi(\eta, \vec x) -\chi_{\vec k}^*(\eta) \dot \chi(\eta, \vec x) \right] e^{-i \vec k \cdot \vec x}
\end{equation*}

\begin{equation*}
a_{\vec k}^{\dagger} = i \int d^3 \vec x \left[ \dot \chi_{\vec k}(\eta) \chi(\eta, \vec x) -\chi_{\vec k}(\eta) \dot \chi(\eta, \vec x) \right] e^{i \vec k \cdot \vec x}
\end{equation*}

How to get these expressions still remains a mystery to me [...]
All you need to prove this is
$$\int_{\mathbb{R}} \mathrm{d}^3 \vec{x} \exp(\pm \mathrm{i} \vec{x} \cdot \vec{k})=(2 \pi)^3 \delta^{(3)}(\vec{k})$$
and the dispersion relation for the momentum eigenmodes,
$$\omega(\vec{k})=\sqrt{\vec{k}^2+m^2}.$$
 
  • Informative
Likes JD_PM
  • #15
Gaussian97 said:
Ok, so now you should be able to prove the commutation relations, right?
Indeed but I should first learn how to derive the expressions at #12 :)
 
  • #16
JD_PM said:
Indeed but I should first learn how to derive the expressions at #12 :)
Well, I don't know if there's a direct way. For sure, now that you have the expressions, you should indeed compute the two integrals to prove that indeed the two equations are correct.

A way to "prove" those relations without knowing the correct expression, I think it could be to start by computing the integrals
$$\int \chi e^{ikx} d^3 x$$
and similar, and maybe then it is easier to see why the exact combination is that one.

Again, I haven't done the integrals so maybe not, but I'm just telling you the ideas I would do if I need to solve the problem myself.
 
  • Like
Likes JD_PM
  • #17
Hi Hendrik, thanks for the reply.

vanhees71 said:
All you need to prove this is
$$\int_{\mathbb{R}} \mathrm{d}^3 \vec{x} \exp(\pm \mathrm{i} \vec{x} \cdot \vec{k})=(2 \pi)^3 \delta^{(3)}(\vec{k})$$
and the dispersion relation for the momentum eigenmodes,
$$\omega(\vec{k})=\sqrt{\vec{k}^2+m^2}.$$

Oh, so we will need to use such relations.

The issue I have is that I do not see an algorithmic method to get the expressions at #12.

What I have been trying so far is to linearly combine ##(2), (3), (4), (5)## so that we end up solving ##a## in terms of ##\chi## and ##\dot \chi## but I did not succeed.

Do you think such method should work?
 
  • #18
What do you mean by "algorithmic"? You can just check these formula for the inversion of the "relativistic Fourier transform", if you wish to call it like this.
 
  • #19
vanhees71 said:
What do you mean by "algorithmic"? You can just check these formula for the inversion of the "relativistic Fourier transform", if you wish to call it like this.

Let me express myself better. I was not necessarily looking for a purely algorithmic method but one that "did the job" (i.e. derive equations at #12).

Thanks to an extended discussion with a very talented and patient colleague I understand how to derive them :biggrin:.

Please share your thoughts about the method if you wish.

We start off by taking the Fourier transform of the operators ##\chi## and ##\dot \chi##

\begin{equation*}
\tilde \chi = \int \frac{d^3 \vec x}{(2\pi)^{3/2}} \chi e^{-i \vec k \cdot \vec x}
\end{equation*}

\begin{equation*}
\tilde{\dot \chi} = \int \frac{d^3 \vec x}{(2\pi)^{3/2}} \dot \chi e^{-i \vec k \cdot \vec x}
\end{equation*}

Plugging them into the Fourier expansion (1) in the OP we get

\begin{align*}
\tilde \chi &= \int \frac{d^3 \vec x}{(2\pi)^{3/2}} \int \frac{d^3 \vec k'}{(2 \pi)^{3/2}} \left( a_{\vec k'} \chi_{\vec k'} e^{i \vec k' \cdot \vec x} + a^{\dagger}_{\vec k'}\chi^*_{\vec k'} e^{-i \vec k' \cdot \vec x} \right) e^{-i \vec k \cdot \vec x} \nonumber \\
&= \int \frac{d^3 \vec x d^3 \vec k'}{(2\pi)^3} \left(a_{\vec k'} \chi_{\vec k'} e^{i (\vec k' - \vec k ) \cdot \vec x} + a_{\vec k'}^{\dagger} \chi_{\vec k'}^* e^{-i (\vec k' + \vec k ) \cdot \vec x} \right) \nonumber \\
&= \int \frac{d^3 \vec k'}{(2\pi)^3}\left(a_{\vec k'} \chi_{\vec k'} \delta^{(3)}(\vec k' -\vec k) + a_{\vec k'}^{\dagger} \chi_{\vec k'}^* \delta^{(3)}(\vec k' +\vec k) \right) \nonumber \\
&= a_{\vec k} \chi_{\vec k} + a_{-\vec k}^{\dagger} \chi_{-\vec k}^*
\end{align*}

Similarly we get

\begin{equation*}
\tilde{\dot \chi} = a_{\vec k} \dot \chi_{\vec k} + a_{-\vec k}^{\dagger} \dot \chi_{-\vec k}^*
\end{equation*}

At this point we notice we have a ##2 \times 2## system of equations and all we have to do is solve it for ##a_{\vec k}## and ##a_{\vec k}^{\dagger}##. First we notice that ##\chi_{\vec k} = \chi_{-\vec k}## (this is because the equation of motion for ##\chi_{\vec k}## (equation (43) in #7) depends on the square of momentum ##k##). So our system of equations can be equivalently written to be

\begin{equation*}
\tilde \chi = a_{\vec k} \chi_{\vec k} + a_{-\vec k}^{\dagger} \chi_{\vec k}^*
\end{equation*}

\begin{equation*}
\tilde{\dot \chi} = a_{\vec k} \dot \chi_{\vec k} + a_{-\vec k}^{\dagger} \dot \chi_{\vec k}^*
\end{equation*}

By taking a particular linear combination and making use of the identity I used at #9 we get

\begin{equation*}
a_{\vec k} = -i \dot \chi _{\vec k}^* \tilde \chi + i \chi_{\vec k}^* \tilde{\dot \chi}
\end{equation*}

It follows that

\begin{equation*}
a_{-\vec k}^{\dagger} = i \dot \chi_{\vec k} \tilde \chi - i \chi_{\vec k} \tilde{\dot \chi}
\end{equation*}

The Fourier transforms of ##a_{\vec k}## and ##a_{\vec k}^{\dagger}## are hence given by

\begin{equation*}
\boxed{a_{\vec k} = -i\int \frac{d^3 \vec x}{(2\pi)^{3/2}}\left[\dot \chi_{\vec k}^* \tilde \chi - \chi_{\vec k}^* \tilde{\dot \chi} \right] e^{-i \vec k \cdot \vec x}}
\end{equation*}

\begin{equation*}
\boxed{a_{\vec k}^{\dagger} = i\int \frac{d^3 \vec x}{(2\pi)^{3/2}}\left[\dot \chi_{\vec k} \tilde \chi - \chi_{\vec k} \tilde{\dot \chi} \right] e^{i \vec k \cdot \vec x}}
\end{equation*}

Where we took ##-k \to k## on the last equation, as it is customary to work with +ive ##k##.
 

FAQ: Deriving Fourier Transform of Operators for Relativistic Quantum Field Theory

What are commutation relations?

Commutation relations refer to the mathematical relationship between two operators that represent physical observables in quantum mechanics. These relations describe how the order in which the operators are applied affects the outcome of a measurement.

Why is it important to show commutation relations?

Showing commutation relations is important because it helps us understand the fundamental principles of quantum mechanics and how operators behave in relation to each other. It also allows us to make predictions about the outcomes of measurements and perform calculations in quantum systems.

How do you show commutation relations?

To show commutation relations, you need to use the commutator, which is defined as the difference between the product of two operators and the product of the same operators in reverse order. The commutator is represented by square brackets and can be calculated using the rules of operator algebra.

What is an example of a commutation relation?

An example of a commutation relation is the Heisenberg uncertainty principle, which states that the position and momentum operators do not commute with each other. This means that the order in which these operators are applied affects the outcome of a measurement and there is a fundamental limit to the precision with which these observables can be simultaneously measured.

How are commutation relations used in quantum mechanics?

Commutation relations are used extensively in quantum mechanics to describe the behavior of physical systems and make predictions about their properties. They are also used in the development of quantum algorithms and in the study of quantum entanglement. Additionally, commutation relations are used in the derivation of important equations such as the Schrödinger equation and the Heisenberg uncertainty principle.

Similar threads

Back
Top