- #1
JD_PM
- 1,131
- 158
- Homework Statement
- Given the commutation relations
\begin{equation*}
[\chi(\eta, \vec x), \chi(\eta, \vec y)] = [\dot \chi(\eta, \vec x), \dot \chi(\eta, \vec y)] = 0,
\end{equation*}
\begin{equation*}
[\chi(\eta, \vec x), \dot \chi(\eta, \vec y)] = i \delta(\vec x - \vec y)
\end{equation*}
Where ##\eta## stands for conformal time and ##\chi## is given by
\begin{equation}
\chi = \int \frac{d^3 k}{(2 \pi)^{3/2}} \left( a_{\vec k} \chi_{\vec k} e^{i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\chi^*_{\vec k} e^{-i \vec k \cdot \vec x} \right) \tag{1}
\end{equation}
Show that
\begin{equation*}
[a_{\vec k}, a_{\vec k'}]=0, \quad [a_{\vec k}, a_{\vec k'}^{\dagger}]= \delta^{(3)}(\vec k -\vec k')
\end{equation*}
- Relevant Equations
- N/A
I would say we first need to take the inverse Fourier transform of ##\chi## and associated quantities i.e.
\begin{equation*}
\chi_{\vec k} = \int d^3 \vec x \left( a_{\vec k} \chi e^{-i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\chi^* e^{i \vec k \cdot \vec x} \right) \tag{2}
\end{equation*}
\begin{equation}
\dot \chi_{\vec k} = \int d^3 \vec x \left( a_{\vec k} \dot \chi e^{-i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\dot \chi^* e^{i \vec k \cdot \vec x} \right) \tag{3}
\end{equation}
\begin{equation}
\chi_{\vec k}^* = \int d^3 \vec x \left( a_{\vec k}^{\dagger} \chi^* e^{i \vec k \cdot \vec x} + a_{\vec k} \chi e^{-i \vec k \cdot \vec x} \right) \tag{4}
\end{equation}
\begin{equation}
\dot \chi_{\vec k}^* = \int d^3 \vec x \left( a_{\vec k}^{\dagger} \dot \chi^* e^{i \vec k \cdot \vec x} + a_{\vec k} \dot \chi e^{-i \vec k \cdot \vec x} \right) \tag{5}
\end{equation}
At this point I should perform a linear combination of ##(2), (3), (4), (5)##, obtaining ##a_{\vec k}## in terms of ##\chi## and ##\dot \chi## (as well as ##a_{\vec k}^{\dagger}## in terms of ##\chi## and ##\dot \chi##).
However, I do not see such linear combination. Might you please shed some light? I should be able to continue once I get such expressions.
Thank you!
\begin{equation*}
\chi_{\vec k} = \int d^3 \vec x \left( a_{\vec k} \chi e^{-i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\chi^* e^{i \vec k \cdot \vec x} \right) \tag{2}
\end{equation*}
\begin{equation}
\dot \chi_{\vec k} = \int d^3 \vec x \left( a_{\vec k} \dot \chi e^{-i \vec k \cdot \vec x} + a^{\dagger}_{\vec k}\dot \chi^* e^{i \vec k \cdot \vec x} \right) \tag{3}
\end{equation}
\begin{equation}
\chi_{\vec k}^* = \int d^3 \vec x \left( a_{\vec k}^{\dagger} \chi^* e^{i \vec k \cdot \vec x} + a_{\vec k} \chi e^{-i \vec k \cdot \vec x} \right) \tag{4}
\end{equation}
\begin{equation}
\dot \chi_{\vec k}^* = \int d^3 \vec x \left( a_{\vec k}^{\dagger} \dot \chi^* e^{i \vec k \cdot \vec x} + a_{\vec k} \dot \chi e^{-i \vec k \cdot \vec x} \right) \tag{5}
\end{equation}
At this point I should perform a linear combination of ##(2), (3), (4), (5)##, obtaining ##a_{\vec k}## in terms of ##\chi## and ##\dot \chi## (as well as ##a_{\vec k}^{\dagger}## in terms of ##\chi## and ##\dot \chi##).
However, I do not see such linear combination. Might you please shed some light? I should be able to continue once I get such expressions.
Thank you!