- #1
einaap
- 1
- 0
Hi fellow physicists,
Suppose a spring with a stiffness k, is attached to wall and with the other side a block with a mass, m, a force F, then pulls the block away from the wall. How do you derive a function for acceleration of the block as a function of time, a(t)?
When trying to solve this I derived the equation: (F-K*s)/m=a but I don't know how to derive a function of s (displacement) as a function of t (to substitute for s in previous equation). The problem seems to be that s(t) is in its turn again a function acceleration which is a function of how far the spring is stretched which is a function of displacement, s :)
Does anyone know how to do this? Thanks
Suppose a spring with a stiffness k, is attached to wall and with the other side a block with a mass, m, a force F, then pulls the block away from the wall. How do you derive a function for acceleration of the block as a function of time, a(t)?
When trying to solve this I derived the equation: (F-K*s)/m=a but I don't know how to derive a function of s (displacement) as a function of t (to substitute for s in previous equation). The problem seems to be that s(t) is in its turn again a function acceleration which is a function of how far the spring is stretched which is a function of displacement, s :)
Does anyone know how to do this? Thanks