- #1
freeman
- 10
- 0
Hello,
I think I need the following for a QFT problem.[tex]tr(\gamma^{5}\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})[/tex]
I know that
[tex]tr(\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})=\eta^{\mu\alpha}tr(\gamma^{\beta}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})-\eta^{\mu\beta}tr(\gamma^{\alpha}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})+\eta^{\mu\nu}tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\rho}\gamma^{\sigma})-\eta^{\mu\rho}tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\sigma})+\eta^{\mu\sigma}tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\rho})[/tex]
and also, using
[tex]\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2\eta^{\mu\nu}[/tex]
and
[tex]tr(\gamma^{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})=-4i\epsilon^{\mu\nu\rho\sigma}[/tex]
on the first equation I inadvertently derived
[tex]\eta^{\mu\alpha}\epsilon^{\beta\nu\rho\sigma}-\eta^{\mu\beta}\epsilon^{\alpha\nu\rho\sigma}+\eta^{\mu\nu}\epsilon^{\alpha\beta\rho\sigma}-\eta^{\mu\rho}\epsilon^{\alpha\beta\nu\sigma}+\eta^{\mu\sigma}\epsilon^{\alphab\beta\nu\rho}=0[/tex]
which while surprising doesn't bring me any closer to the resolution of my problem.
Any suggestions would be great.
Eoin Kerrane.
I think I need the following for a QFT problem.[tex]tr(\gamma^{5}\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})[/tex]
I know that
[tex]tr(\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})=\eta^{\mu\alpha}tr(\gamma^{\beta}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})-\eta^{\mu\beta}tr(\gamma^{\alpha}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})+\eta^{\mu\nu}tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\rho}\gamma^{\sigma})-\eta^{\mu\rho}tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\sigma})+\eta^{\mu\sigma}tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\nu}\gamma^{\rho})[/tex]
and also, using
[tex]\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2\eta^{\mu\nu}[/tex]
and
[tex]tr(\gamma^{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})=-4i\epsilon^{\mu\nu\rho\sigma}[/tex]
on the first equation I inadvertently derived
[tex]\eta^{\mu\alpha}\epsilon^{\beta\nu\rho\sigma}-\eta^{\mu\beta}\epsilon^{\alpha\nu\rho\sigma}+\eta^{\mu\nu}\epsilon^{\alpha\beta\rho\sigma}-\eta^{\mu\rho}\epsilon^{\alpha\beta\nu\sigma}+\eta^{\mu\sigma}\epsilon^{\alphab\beta\nu\rho}=0[/tex]
which while surprising doesn't bring me any closer to the resolution of my problem.
Any suggestions would be great.
Eoin Kerrane.
Last edited: