- #1
- 1,753
- 143
Find the 1st derivative using "the long way" method. Show all the algebra.
[tex]f(x)=x^2+\frac{4}{x}[/tex]
[tex]
\begin{array}{l}
f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h} = \\
\\
\mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h} \right)^2 + 4\left( {x + h} \right)^{ - 1} - \left( {x^2 + 4x^{ - 1} } \right)}}{h} = \\
\\
\mathop {\lim }\limits_{h \to 0} \frac{{x^2 + 2xh + h^2 + 4\left( {x + h} \right)^{ - 1} - x^2 - 4x^{ - 1} }}{h} \\
\end{array}
[/tex]
Here's where I get stuck. I don't know what to do with
[tex]
{\left( {x + h} \right)^{ - 1} }
[/tex]
I forget the algebra for this step. Am I even going in the right direction to bring this term up from the denominator?
[tex]f(x)=x^2+\frac{4}{x}[/tex]
[tex]
\begin{array}{l}
f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h} = \\
\\
\mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h} \right)^2 + 4\left( {x + h} \right)^{ - 1} - \left( {x^2 + 4x^{ - 1} } \right)}}{h} = \\
\\
\mathop {\lim }\limits_{h \to 0} \frac{{x^2 + 2xh + h^2 + 4\left( {x + h} \right)^{ - 1} - x^2 - 4x^{ - 1} }}{h} \\
\end{array}
[/tex]
Here's where I get stuck. I don't know what to do with
[tex]
{\left( {x + h} \right)^{ - 1} }
[/tex]
I forget the algebra for this step. Am I even going in the right direction to bring this term up from the denominator?