- #1
jcap
- 170
- 12
Consider a free particle with rest mass ##m## moving along a geodesic in some curved spacetime with metric ##g_{\mu\nu}##:
$$S=-m\int d\tau=-m\int\Big(\frac{d\tau}{d\lambda}\Big)d\lambda=\int L\ d\lambda$$
$$L=-m\frac{d\tau}{d\lambda}=-m\Big(-g_{\mu\nu}\frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}\Big)^{1/2}$$
The canonical 4-momentum ##P_\alpha## can be derived from the Lagrangian ##L## using the following calculation:
\begin{eqnarray*}
P_\alpha &=& \frac{\partial L}{\partial(dx^\alpha/d\lambda)} \\
&=& \frac{m}{2}\frac{d\lambda}{d\tau}\Big(g_{\alpha\nu}\frac{dx^\nu}{d\lambda}+g_{\mu\alpha}\frac{dx^\mu}{d\lambda}\Big) \\
&=& m\ g_{\alpha\nu}\frac{dx^\nu}{d\tau} \\
&=& m\ \frac{dx_\alpha}{d\tau}
\end{eqnarray*}
where we have used the fact that the metric ##g_{\mu\nu}## is symmetric.
Thus, expressed in contravariant form, we have derived an expression for the 4-momentum ##P^\alpha## given by
$$P^\alpha=m\ \frac{dx^\alpha}{d\tau}$$
using a completely general metric ##g_{\mu\nu}##.
Is it correct to interpret the components of ##P^\alpha## in the following manner:
##P^0## is the energy of the particle,
##P^i## is the 3-momentum of the particle in the ##\partial_i## direction?
$$S=-m\int d\tau=-m\int\Big(\frac{d\tau}{d\lambda}\Big)d\lambda=\int L\ d\lambda$$
$$L=-m\frac{d\tau}{d\lambda}=-m\Big(-g_{\mu\nu}\frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}\Big)^{1/2}$$
The canonical 4-momentum ##P_\alpha## can be derived from the Lagrangian ##L## using the following calculation:
\begin{eqnarray*}
P_\alpha &=& \frac{\partial L}{\partial(dx^\alpha/d\lambda)} \\
&=& \frac{m}{2}\frac{d\lambda}{d\tau}\Big(g_{\alpha\nu}\frac{dx^\nu}{d\lambda}+g_{\mu\alpha}\frac{dx^\mu}{d\lambda}\Big) \\
&=& m\ g_{\alpha\nu}\frac{dx^\nu}{d\tau} \\
&=& m\ \frac{dx_\alpha}{d\tau}
\end{eqnarray*}
where we have used the fact that the metric ##g_{\mu\nu}## is symmetric.
Thus, expressed in contravariant form, we have derived an expression for the 4-momentum ##P^\alpha## given by
$$P^\alpha=m\ \frac{dx^\alpha}{d\tau}$$
using a completely general metric ##g_{\mu\nu}##.
Is it correct to interpret the components of ##P^\alpha## in the following manner:
##P^0## is the energy of the particle,
##P^i## is the 3-momentum of the particle in the ##\partial_i## direction?