Deriving the commutation relations of the Lie algebra of Lorentz group

bella987
Messages
2
Reaction score
0
Homework Statement
Find commutation relations for Lorentz group
Relevant Equations
See below.
This is the defining generator of the Lorentz group
1_Q.png

which is then divided into subgroups for rotations and boosts
2_Q.png

And I then want to find the commutation relation [J_m, J_n] (and [J_m, K_n] ). I'm following this derivation, but am having a hard time to understand all the steps:
Skjermbilde 2023-04-09 130023.png

especially between here and the following step
4_Q.png

Could someone explain to someone just getting familiar with the Levi-Cevita symbol and its Kronecker delta dependence, what exactly is going on from step to step here? I would be so grateful!!
 
Physics news on Phys.org
Indices with roman letters are spatial right, and greek time + spatial?
What definition of minkowski metric you have? Diag(+,-,-,-) or Diag(-,+,+,+)?
 
Hmm, the greek letters are definitely time + spatial, but in the second included equation we divide the 6 generators into three spatial ones (rotations) and three temporal ones (boosts), so the roman ones are used when seperating them like that.
And it's mostly minus metric.
 
Ok, great.
Well that is the first step. ##g_{\alpha \gamma}## becomes ##- \delta_{ac}##.
1681042905024.png


Do you know anything about the ##\mathcal{L}## i.e. are they symmetric or anti-symmetric? This will help you simplify identities with kroneckers and levi-civitas.

Use
1681042861128.png

and calculate the commutator
1681042891053.png

show first that this equals
1681042925729.png

just by replacing ##g## with kroeckers and using the defining commutation amongs ##\mathcal{L}##.

As per the forum rules, you must show your attempt at a solution. "I do not understand" is not enough.
 

Attachments

  • 1681042740086.png
    1681042740086.png
    6.5 KB · Views: 172
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top