Deriving the commutation relations of the Lie algebra of Lorentz group

  • #1
bella987
2
0
Homework Statement
Find commutation relations for Lorentz group
Relevant Equations
See below.
This is the defining generator of the Lorentz group
1_Q.png

which is then divided into subgroups for rotations and boosts
2_Q.png

And I then want to find the commutation relation [J_m, J_n] (and [J_m, K_n] ). I'm following this derivation, but am having a hard time to understand all the steps:
Skjermbilde 2023-04-09 130023.png

especially between here and the following step
4_Q.png

Could someone explain to someone just getting familiar with the Levi-Cevita symbol and its Kronecker delta dependence, what exactly is going on from step to step here? I would be so grateful!!
 
Physics news on Phys.org
  • #2
Indices with roman letters are spatial right, and greek time + spatial?
What definition of minkowski metric you have? Diag(+,-,-,-) or Diag(-,+,+,+)?
 
  • #3
Hmm, the greek letters are definitely time + spatial, but in the second included equation we divide the 6 generators into three spatial ones (rotations) and three temporal ones (boosts), so the roman ones are used when seperating them like that.
And it's mostly minus metric.
 
  • #4
Ok, great.
Well that is the first step. ##g_{\alpha \gamma}## becomes ##- \delta_{ac}##.
1681042905024.png


Do you know anything about the ##\mathcal{L}## i.e. are they symmetric or anti-symmetric? This will help you simplify identities with kroneckers and levi-civitas.

Use
1681042861128.png

and calculate the commutator
1681042891053.png

show first that this equals
1681042925729.png

just by replacing ##g## with kroeckers and using the defining commutation amongs ##\mathcal{L}##.

As per the forum rules, you must show your attempt at a solution. "I do not understand" is not enough.
 

Attachments

  • 1681042740086.png
    1681042740086.png
    6.5 KB · Views: 148

Similar threads

Back
Top