- #1
TerryW
Gold Member
- 211
- 17
Homework Statement
I've been working through a paper by Alexey Golovnev, title 'ADM and massive gravity' arXiv.1302.0687v4 [gr-qc] 26 March 2013. I am hoping to use his result for the Einstein-Hilbert density to achieve my aim of finding a way to derive Equation 21.90 in MTW. I have worked my way through the paper and can see that all the equations given are OK, with one crucial exception:
Homework Equations
The final link in the chain is this:
##-2 \sqrt{-g}\nabla_μ (K^i_in^μ) = -2∂_0(\sqrt{γ}K^i_i) + 2\sqrt{γ}^{(3)}\nabla_j(K^i_iN^j)##
My attempt to prove this identity ends up with an extra term. Can anyone tell me where I've gone wrong?
The Attempt at a Solution
Using the derivations in the paper:
##-2 \sqrt{-g}\nabla_μ (K^i_in^μ) = -2 \sqrt{-g}^{(4)}\nabla_0 (K^i_in^0) - 2 \sqrt{-g}^{(4)}\nabla_j (K^i_in^j)##
##= -2 ^{(4)}\nabla_0 (\sqrt{γ}NK^i_i\frac{1}{N}) - 2 \sqrt{-g}^{(4)}\nabla_j (K^i_in^j)##
##= -2 ^{(4)}\nabla_0 (\sqrt{γ}K^i_i) - 2 \sqrt{-g}[∂_j(K^i_in^j) + ^{(4)}Γ^j_{αj}(K^i_in^α)]##
##= -2 ∂_0 (\sqrt{γ}K^i_i) - 2 \sqrt{-g}∂_j(K^i_in^j) -2\sqrt{-g} ^{(4)}Γ^j_{0j}(K^i_in^0) -2\sqrt{-g} ^{(4)}Γ^j_{kj}(K^i_in^k)##
##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{-g}∂_j(K^i_i\frac{N^j}{N}) -2\sqrt{-g} ^{(4)}Γ^j_{0j}(K^i_i\frac{1}{N}) +2\sqrt{-g} ^{(4)}Γ^j_{kj}(K^i_i\frac{N^k}{N})##
##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{-g}∂_j(K^i_iN^j)(\frac{1}{N}) +2 \sqrt{-g}(K^i_iN^j)∂_j(\frac{1}{N})-2\sqrt{γ}N^{(4)}Γ^j_{0j}(K^i_i\frac{1}{N})##
## +2\sqrt{γ} N^{(4)}Γ^j_{kj}(K^i_i\frac{N^k}{N})##
##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}∂_j(K^i_iN^j) +2\sqrt{γ}^{(4)}Γ^j_{kj}K^i_iN^k+2\sqrt{-g}(K^i_iN^j)(\frac{-1}{N^2})∂_jN -2\sqrt{γ} ^{(4)}Γ^j_{0j}(K^i_i)##
##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}∂_j(K^i_iN^j) +2\sqrt{γ}(^{(3)}Γ^j_{kj} +\frac{N^j}{N}K_{jk})K^i_iN^k)-2\sqrt{γ}K^i_i(\frac{N^j}{N}∂_jN + ^{(4)}Γ^j_{0j})##
##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}^{(3)}\nabla_j(K^i_iN^j) +2\sqrt{γ}\frac{N^j}{N}K_{jk}K^i_iN^k -2\sqrt{γ}K^i_i\frac{N^j}{N}∂_jN -2\sqrt{γ}K^i_{i}## ##^{(4)}Γ^j_{0j}##
The first two terms are what I was aiming for. The three remaining terms are 'surplus' to requirements!
I can reduce these three terms down to just one as follows
##2\sqrt{γ}\frac{N^j}{N}K_{jk}K^i_iN^k -2\sqrt{γ}K^i_i\frac{N^j}{N}∂_jN -2\sqrt{γ}K^i_{i} ## ##^{(4)}Γ^j_{0j}##
##= 2\sqrt{γ}K^i_i[\frac{N^j}{N}K_{jk}N^k -\frac{N^j}{N}∂_jN - ^{(4)}Γ^j_{0j}]##
##= 2\sqrt{γ}K^i_i[\frac{N^j}{N}K_{jk}N^k -\frac{N^j}{N}∂_jN - [-\frac{N^j}{N}∂_jN -N(γ^{jk} - \frac{N^jN^k}{N^2})K_{jk} + ^{(3)}\nabla_j(N^j)]##
##= 2\sqrt{γ}K^i_i[Nγ^{jk}K_{jk} - ^{(3)}\nabla_j(N^j)]##
##= 2\sqrt{γ}K^i_i[Nγ^{jk}K_{jk} - γ^{jk}## ##^{(3)}\nabla_j(N_k)]##
##= -2\sqrt{γ}K^i_iγ^{jk}\,^{(4)}Γ_{k0j}##
I'd really appreciate it if someone can help me get rid of this last term!