Deriving the perturbative expansion from Hubbard to Heisenberg

In summary, the article discusses the process of deriving the perturbative expansion in quantum many-body physics, transitioning from the Hubbard model to the Heisenberg model. It outlines the mathematical techniques used to express interactions in a simplified manner and explores the physical implications of this transition, particularly in the context of magnetic properties and phase transitions in condensed matter systems. The work emphasizes the significance of understanding these models for predicting material behavior and the role of perturbative methods in theoretical investigations.
  • #1
hokhani
506
8
TL;DR Summary
I can not go one step further in this expansion.
In the youtube lecture “electron interaction and the Hubbard model” at the time 2:23:00, we have the following self-consistent equation with energy appearing at both sides:
$$(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P) |\phi \rangle_{g.s.} =E |\phi \rangle_{g.s.}$$
Where ##H_0## is the unperturbed Hamiltonian, ##H_1## the perturbation, ##|\phi \rangle_{g.s.}## is the ground state ket of the full Hamiltonian ##(H_0+H_1)##, and ##\hat P (\hat Q)## is the projection operator on the ground (excited) states of ##H_0##.
By defining the effective Hamiltonian as:
$$H_{eff}=(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P)$$
The self-consistent equation is as:
$$H_{eff}|\phi \rangle_{g.s.}=E|\phi \rangle_{g.s.}$$
So, my question:
How does the solution of this effective Hamiltonian, recursively, give the following equation?
$$H_{eff}=\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P +$$
Where the first, second and third lines are respectively zero, second and third order terms.

I would be grateful if anyone could please provide any help with that.
 
Back
Top