- #1
jcap
- 170
- 12
Using the Einstein-Hilbert action for a Universe with just the cosmological constant ##\Lambda##:
$$S=\int\Big[\frac{R}{2}-\Lambda\Big]\sqrt{-g}\ d^4x$$
I would like to derive the equations of motion:
$$\Big(\frac{\dot a}{a}\Big)^2+\frac{k}{a^2}=\frac{\Lambda}{3}\tag{1}$$
$$2\frac{\ddot a}{a}+\Big(\frac{\dot a}{a}\Big)^2+\frac{k}{a^2}=\Lambda\tag{2}$$
I use the FRW metric to substitute in
$$R=\frac{6}{a^2}(a\ddot a+\dot a^2+k)$$
and
$$\sqrt{-g} \propto a^3$$
I then have the following Euler-Lagrange equation for derivatives of ##a(t)##:
$$\frac{\partial L}{\partial a}-\frac{d}{dt}\frac{\partial L}{\partial \dot a}+\frac{d^2}{dt^2}\frac{\partial L}{\partial \ddot a}=0$$
This gives me equation (2).
How would I get equation (1) using this approach?
$$S=\int\Big[\frac{R}{2}-\Lambda\Big]\sqrt{-g}\ d^4x$$
I would like to derive the equations of motion:
$$\Big(\frac{\dot a}{a}\Big)^2+\frac{k}{a^2}=\frac{\Lambda}{3}\tag{1}$$
$$2\frac{\ddot a}{a}+\Big(\frac{\dot a}{a}\Big)^2+\frac{k}{a^2}=\Lambda\tag{2}$$
I use the FRW metric to substitute in
$$R=\frac{6}{a^2}(a\ddot a+\dot a^2+k)$$
and
$$\sqrt{-g} \propto a^3$$
I then have the following Euler-Lagrange equation for derivatives of ##a(t)##:
$$\frac{\partial L}{\partial a}-\frac{d}{dt}\frac{\partial L}{\partial \dot a}+\frac{d^2}{dt^2}\frac{\partial L}{\partial \ddot a}=0$$
This gives me equation (2).
How would I get equation (1) using this approach?