MHB De's question at Yahoo Answers (Power series representation)

AI Thread Summary
To find the first five non-zero terms of the power series representation for the function f(x) = 3x^3/(x-3)^2 centered at x=0, the discussion introduces the function g(x) = 1/(x-3) and its derivative g'(x). By applying the uniform convergence of the power series and the geometric series sum, g(x) is expressed as a series. The transformation leads to the expression for f(x) in terms of a power series, allowing the extraction of the first five non-zero terms. The response encourages further questions to be posted on a dedicated math help forum.
Mathematics news on Phys.org
Hello de,

Denote $g(x)=\dfrac{1}{x-3}$, then $g'(x)=-\dfrac{1}{(x-3)^2}$. Using the uniform convergence of the power series and the sum of the geometric series: $$g(x)=-\frac{1}{3}\frac{1}{1-x/3}=-\frac{1}{3}\sum_{n=0}^{+\infty}\frac{x^n}{3^n} \Rightarrow g'(x)=-\frac{1}{3}\sum_{n=1}^{+\infty}\frac{nx^{n-1}}{3^n}\quad (|x|<3)$$ Then, $$f(x)=\frac{3x^3}{(x-3)^2}=(3x^3)\frac{1}{3}\sum_{n=1}^{+\infty}\frac{nx^{n-1}}{3^n}=\sum_{n=1}^{+\infty}\frac{nx^{n+2}}{3^n} \quad (|x|<3)$$ and now, you'll easily find the first five non-zero terms.

If you have further questions you can post them in the http://www.mathhelpboards.com/f10/ section.http://www.mathhelpboards.com/f10/
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top