- #1
- 2,810
- 605
Consider snell's law [itex] n_1 \sin{\theta_1}=n_2 \sin{\theta_2} [/itex]([itex] n_1 [/itex] and [itex] n_2[/itex] are real).
We know that if [itex] n_2<n_1 [/itex], there exists an incident angle called critical angle that gives a refraction angle of ninety degrees i.e. [itex] \sin{\theta_c}=\frac{n_2}{n_1} [/itex].
But if the incident angle is greater than the critical angle(i.e. [itex] \sin{\theta_1}>\frac{n_2}{n_1} [/itex]),Then:[itex] \sin{\theta_2}=\frac{n_1}{n_2}\sin{\theta_1}>1[/itex]
But we know that [itex] \sin{\theta}>1 [/itex] can happen for no real [itex] \theta [/itex],so we say that [itex] \theta_2 [/itex] should be complex:
[itex] \theta_2=\alpha+i \beta [/itex] and [itex] \sin{\theta_2}=\sin{(\alpha+i \beta)}=\sin{(\alpha)}\cos{(i \beta)}+\sin{(i \beta)}\cos{(\alpha)}=\sin{(\alpha)}\cosh{(\beta)}+i\cos{(\alpha)}\sinh{(\beta)} [/itex]
But from snell'w law,we know that [itex] \sin{\theta_2}[/itex] should be real and so we should always have [itex] cos{\alpha}=0 \Rightarrow \alpha=\frac{\pi}{2} [/itex] and so [itex] \sin{\theta_2}=\cosh{\beta} [/itex].
This means that the only variable which is capable of giving information about the Total reflected ray,is [itex] \beta [/itex]. But how?
Thanks
We know that if [itex] n_2<n_1 [/itex], there exists an incident angle called critical angle that gives a refraction angle of ninety degrees i.e. [itex] \sin{\theta_c}=\frac{n_2}{n_1} [/itex].
But if the incident angle is greater than the critical angle(i.e. [itex] \sin{\theta_1}>\frac{n_2}{n_1} [/itex]),Then:[itex] \sin{\theta_2}=\frac{n_1}{n_2}\sin{\theta_1}>1[/itex]
But we know that [itex] \sin{\theta}>1 [/itex] can happen for no real [itex] \theta [/itex],so we say that [itex] \theta_2 [/itex] should be complex:
[itex] \theta_2=\alpha+i \beta [/itex] and [itex] \sin{\theta_2}=\sin{(\alpha+i \beta)}=\sin{(\alpha)}\cos{(i \beta)}+\sin{(i \beta)}\cos{(\alpha)}=\sin{(\alpha)}\cosh{(\beta)}+i\cos{(\alpha)}\sinh{(\beta)} [/itex]
But from snell'w law,we know that [itex] \sin{\theta_2}[/itex] should be real and so we should always have [itex] cos{\alpha}=0 \Rightarrow \alpha=\frac{\pi}{2} [/itex] and so [itex] \sin{\theta_2}=\cosh{\beta} [/itex].
This means that the only variable which is capable of giving information about the Total reflected ray,is [itex] \beta [/itex]. But how?
Thanks