- #1
member 428835
Homework Statement
Show $$\frac{\partial \det(A)}{\partial A_{pq}} = \frac{1}{2}\epsilon_{pjk}\epsilon_{qmn}A_{jm}A_{kn}$$
Homework Equations
##\det(A)=\epsilon_{ijk}A_{1i}A_{2j}A_{3k}##
The Attempt at a Solution
$$\frac{\partial \det(A)}{\partial A_{pq}}=\frac{\partial}{\partial A_{pq}}\epsilon_{ijk}A_{1i}A_{2j}A_{3k}\\
=\epsilon_{ijk}\frac{\partial}{\partial A_{pq}}A_{1i}A_{2j}A_{3k}$$
but I'm now stuck. I feel like one of the ##A## components on the RHS must go to 1 and the rest would be constant, leaving some sort of ##\epsilon A_{yy} A_{xx}## behind. I'm thinking along the lines of ##\partial A_{ij}/\partial A_{ik} = \delta_{jk}##. Any ideas?