- #1
golekjwb
- 4
- 0
Let \begin{equation*}
A=%
\begin{bmatrix}
0 & 1 & \cdots & n-1 & n \\
1 & 0 & \cdots & n-2 & n-1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
n-1 & n-2 & \cdots & 0 & 1 \\
n& n-2 & \cdots & 1 & 0%
\end{bmatrix}%
\end{equation*}.
How can you prove that det(A)=[(-1)^n][n][2^(n-1)]? Thanks.
A=%
\begin{bmatrix}
0 & 1 & \cdots & n-1 & n \\
1 & 0 & \cdots & n-2 & n-1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
n-1 & n-2 & \cdots & 0 & 1 \\
n& n-2 & \cdots & 1 & 0%
\end{bmatrix}%
\end{equation*}.
How can you prove that det(A)=[(-1)^n][n][2^(n-1)]? Thanks.
Last edited: