- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $$A=\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\in \mathbb{R}^{3\times 3}$$
I want to determine a matrix $C\in GL_3(\mathbb{R})$ such that $T:=C\cdot A$ has echelon form. Performing an elementary row operation is equivalent to multiplying an invertible matrix, right? (Wondering)
So do we apply the Gauss algorithm at $[A \ \mid \ I_3]$, and bring $A$ into echelon form, then the $3\times 3$-matrix that we get on the right side is the matrix $C$ that we are looking for, i.e. we get $[T \ \mid \ C]$ ?
I mean the following:
\begin{equation*}\begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0\\ 7 & 8 & 9 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & -6 & -12 & -7 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix}\end{equation*}
(Wondering)
At the proposed solution they continue the Gauss algorithm and they get the following:
\begin{equation*}\begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0\\ 7 & 8 & 9 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & -6 & -12 & -7 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & -1 & -\frac{5}{3} & \frac{2}{3} & 0 \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix}\end{equation*} Why do they change also the first two rows although we already have the echelon form? Would it be wrong to stop the algrithm as I did it? I mean is it wrong to consider the matrices \begin{equation*}T=\begin{pmatrix}1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} \ \text{ and } \ C=\begin{pmatrix}1 & 0 & 0 \\ -4 & 1 & 0 \\ 1 & -2 & 1\end{pmatrix}\end{equation*} ? (Wondering)
Let $$A=\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\in \mathbb{R}^{3\times 3}$$
I want to determine a matrix $C\in GL_3(\mathbb{R})$ such that $T:=C\cdot A$ has echelon form. Performing an elementary row operation is equivalent to multiplying an invertible matrix, right? (Wondering)
So do we apply the Gauss algorithm at $[A \ \mid \ I_3]$, and bring $A$ into echelon form, then the $3\times 3$-matrix that we get on the right side is the matrix $C$ that we are looking for, i.e. we get $[T \ \mid \ C]$ ?
I mean the following:
\begin{equation*}\begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0\\ 7 & 8 & 9 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & -6 & -12 & -7 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix}\end{equation*}
(Wondering)
At the proposed solution they continue the Gauss algorithm and they get the following:
\begin{equation*}\begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0\\ 7 & 8 & 9 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & -6 & -12 & -7 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & -1 & -\frac{5}{3} & \frac{2}{3} & 0 \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix}\end{equation*} Why do they change also the first two rows although we already have the echelon form? Would it be wrong to stop the algrithm as I did it? I mean is it wrong to consider the matrices \begin{equation*}T=\begin{pmatrix}1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} \ \text{ and } \ C=\begin{pmatrix}1 & 0 & 0 \\ -4 & 1 & 0 \\ 1 & -2 & 1\end{pmatrix}\end{equation*} ? (Wondering)