MHB Determine all real valued differentiable functions f(x)+f(y)=f(xy)

AI Thread Summary
The discussion focuses on finding all real-valued differentiable functions f defined for x > 0 that satisfy the equation f(x) + f(y) = f(xy) for all x, y > 0. By setting x = y = 1, it is established that f(1) = 0. Differentiating the equation with respect to x leads to the conclusion that xf'(x) is constant, allowing for the integration to yield f(x) = c ln x + d. Given that f(1) = 0, it follows that d must equal 0, resulting in the final solution f(x) = c ln x. These functions are the only solutions to the problem.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine, with proof, all the real-valued differentiable functions $f$, defined
for real $x > 0$, which satisfy $f(x) + f(y) = f(xy)$ for all $x, y > 0$.
 
Mathematics news on Phys.org
The first thing I would notice is that, taking y= 0, f(x)+ f(0)= f(0) so that f(x)= 0 for all x.
 
because f(xy) = f(x) + f(y) and defined for x, y >0 I see a log function $f(x) =m\log\,x$ satisfies criteria where m is arbitrary constant. m= 0 gives above solution(post #2)
 
lfdahl said:
Determine, with proof, all the real-valued differentiable functions $f$, defined
for real $x > 0$, which satisfy $f(x) + f(y) = f(xy)$ for all $x, y > 0$.
[sp]With $x=y=1$, $f(1) + f(1) = f(1)$, from which $f(1) = 0$.

Fix $y$, and differentiate the equation $f(x) + f(y) = f(xy)$ with respect to $x$: $f'(x) = yf'(xy)$. Therefore $xf'(x) = xyf'(xy)$.

Now let $z = xy$, so that $xf'(x) = zf'(z)$. Since that is true for all positive numbers $x$ and $z$, it follows that $xf'(x)$ is constant, say $xf'(x) = c$. Then $f'(x) = \dfrac cx$, so we can integrate to get $f(x) = c\ln x + d$ (where $d$ is another constant). But $f(1) = 0$, so that $d=0$. Thus $f(x) = c\ln x$, and those are the only solutions.[/sp]
 
kaliprasad said:
because f(xy) = f(x) + f(y) and defined for x, y >0 I see a log function $f(x) =m\log\,x$ satisfies criteria where m is arbitrary constant. m= 0 gives above solution(post #2)
Hi, kaliprasad!
Your intuitive solution is correct indeed! Thanks for participating!

- - - Updated - - -

Opalg said:
[sp]With $x=y=1$, $f(1) + f(1) = f(1)$, from which $f(1) = 0$.

Fix $y$, and differentiate the equation $f(x) + f(y) = f(xy)$ with respect to $x$: $f'(x) = yf'(xy)$. Therefore $xf'(x) = xyf'(xy)$.

Now let $z = xy$, so that $xf'(x) = zf'(z)$. Since that is true for all positive numbers $x$ and $z$, it follows that $xf'(x)$ is constant, say $xf'(x) = c$. Then $f'(x) = \dfrac cx$, so we can integrate to get $f(x) = c\ln x + d$ (where $d$ is another constant). But $f(1) = 0$, so that $d=0$. Thus $f(x) = c\ln x$, and those are the only solutions.[/sp]

Thanks, Opalg! for your participation. Your solution is - of course - correct!(Yes)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top